### POGIL GENE EXPRESSION TRANSCRIPTION

POGIL GENE EXPRESSION TRANSCRIPTION IS A CRUCIAL CONCEPT IN MOLECULAR BIOLOGY THAT COMBINES THE COLLABORATIVE LEARNING APPROACH OF POGIL (PROCESS ORIENTED GUIDED INQUIRY LEARNING) WITH THE INTRICATE PROCESS OF GENE EXPRESSION, ESPECIALLY FOCUSING ON TRANSCRIPTION. THIS ARTICLE EXPLORES WHAT POGIL IS, HOW GENE EXPRESSION WORKS, AND WHY TRANSCRIPTION IS VITAL FOR ALL LIVING ORGANISMS. YOU'LL DISCOVER HOW EDUCATORS USE POGIL ACTIVITIES TO ENHANCE UNDERSTANDING OF MOLECULAR GENETICS, THE KEY MECHANISMS OF TRANSCRIPTION, AND THE REGULATORY FACTORS INVOLVED. WE'LL ALSO EXAMINE THE IMPORTANCE OF TEACHING GENE EXPRESSION THROUGH GUIDED INQUIRY, THE COMPONENTS OF A TYPICAL POGIL ACTIVITY, AND THE WAYS POGIL SUPPORTS MASTERY OF COMPLEX BIOLOGICAL CONCEPTS. WHETHER YOU'RE A STUDENT, EDUCATOR, OR SOMEONE INTERESTED IN GENETICS, THIS COMPREHENSIVE GUIDE WILL PROVIDE VALUABLE INSIGHTS AND PRACTICAL INFORMATION ABOUT POGIL GENE EXPRESSION TRANSCRIPTION AND ITS ROLE IN MODERN BIOLOGY EDUCATION.

- UNDERSTANDING POGIL AND ITS ROLE IN BIOLOGY EDUCATION
- OVERVIEW OF GENE EXPRESSION
- THE PROCESS OF TRANSCRIPTION IN GENE EXPRESSION
- POGIL ACTIVITIES FOR TEACHING TRANSCRIPTION
- KEY COMPONENTS OF A POGIL GENE EXPRESSION TRANSCRIPTION ACTIVITY
- BENEFITS OF POGIL FOR LEARNING TRANSCRIPTION
- Common Misconceptions Addressed in POGIL
- ASSESSMENT AND EVALUATION IN POGIL-BASED LEARNING
- FUTURE DIRECTIONS IN POGIL GENE EXPRESSION TRANSCRIPTION EDUCATION

### UNDERSTANDING POGIL AND ITS ROLE IN BIOLOGY EDUCATION

POGIL, OR PROCESS ORIENTED GUIDED INQUIRY LEARNING, IS A STUDENT-CENTERED INSTRUCTIONAL STRATEGY WIDELY USED IN SCIENCE EDUCATION. IT EMPHASIZES COLLABORATIVE LEARNING, CRITICAL THINKING, AND THE DEVELOPMENT OF PROCESS SKILLS ALONGSIDE CONTENT MASTERY. IN THE CONTEXT OF BIOLOGY, POGIL ACTIVITIES ARE DESIGNED TO ENGAGE STUDENTS IN EXPLORING COMPLEX TOPICS SUCH AS GENE EXPRESSION AND TRANSCRIPTION THROUGH STRUCTURED INQUIRY AND TEAMWORK. BY USING POGIL GENE EXPRESSION TRANSCRIPTION EXERCISES, EDUCATORS FOSTER A DEEPER UNDERSTANDING OF MOLECULAR PROCESSES, ENABLING STUDENTS TO APPLY KNOWLEDGE TO REAL-WORLD PROBLEMS. THIS APPROACH ALIGNS WITH THE GOALS OF ACTIVE LEARNING AND HELPS STUDENTS RETAIN INFORMATION MORE EFFECTIVELY COMPARED TO TRADITIONAL LECTURE-BASED METHODS.

# OVERVIEW OF GENE EXPRESSION

GENE EXPRESSION IS THE PROCESS BY WHICH INFORMATION ENCODED IN A GENE IS USED TO DIRECT THE SYNTHESIS OF A FUNCTIONAL GENE PRODUCT, USUALLY A PROTEIN. THIS BIOLOGICAL MECHANISM IS FUNDAMENTAL FOR THE GROWTH, DEVELOPMENT, AND FUNCTIONING OF ALL LIVING ORGANISMS. THE PROCESS OF GENE EXPRESSION INVOLVES TWO MAIN STAGES: TRANSCRIPTION AND TRANSLATION. TRANSCRIPTION IS THE FIRST STEP, WHERE DNA IS TRANSCRIBED INTO MESSENGER RNA (MRNA). TRANSLATION FOLLOWS, USING MRNA AS A TEMPLATE TO ASSEMBLE AMINO ACIDS INTO PROTEINS. EFFECTIVE UNDERSTANDING OF POGIL GENE EXPRESSION TRANSCRIPTION IS ESSENTIAL FOR GRASPING HOW GENETIC INSTRUCTIONS ARE CARRIED OUT WITHIN CELLS AND HOW GENE ACTIVITY IS REGULATED.

### IMPORTANCE OF GENE EXPRESSION IN LIVING ORGANISMS

GENE EXPRESSION CONTROLS CELLULAR IDENTITY, DEVELOPMENTAL PATHWAYS, AND RESPONSES TO ENVIRONMENTAL STIMULI. WITHOUT REGULATED GENE EXPRESSION, CELLS WOULD NOT FUNCTION PROPERLY, LEADING TO DEVELOPMENTAL ABNORMALITIES OR DISEASE. MASTERY OF POGIL GENE EXPRESSION TRANSCRIPTION CONCEPTS PROVIDES A FOUNDATION FOR EXPLORING ADVANCED TOPICS SUCH AS GENETIC ENGINEERING, PERSONALIZED MEDICINE, AND BIOTECHNOLOGY.

### THE PROCESS OF TRANSCRIPTION IN GENE EXPRESSION

Transcription is the first and critical step of gene expression. During transcription, a specific segment of DNA is copied into RNA by the enzyme RNA polymerase. This process occurs in the nucleus of eukaryotic cells and the cytoplasm of prokaryotes. Understanding the molecular mechanisms of transcription is vital for comprehending how genetic information is converted from a stable DNA template into a dynamic RNA message, which will ultimately guide protein synthesis.

### KEY STEPS IN TRANSCRIPTION

- INITIATION: RNA POLYMERASE BINDS TO A PROMOTER REGION ON THE DNA, UNWINDS THE DNA, AND BEGINS RNA SYNTHESIS
- ELONGATION: RNA POLYMERASE MOVES ALONG THE DNA STRAND, ADDING COMPLEMENTARY RNA NUCLEOTIDES TO THE GROWING MRNA TRANSCRIPT.
- TERMINATION: RNA POLYMERASE REACHES A TERMINATOR SEQUENCE AND RELEASES THE NEWLY SYNTHESIZED MRNA MOLECULE.

EACH OF THESE STEPS IS REGULATED BY VARIOUS PROTEINS AND SEQUENCES WITHIN THE DNA, ENSURING THAT TRANSCRIPTION OCCURS ACCURATELY AND EFFICIENTLY. POGIL GENE EXPRESSION TRANSCRIPTION ACTIVITIES HELP STUDENTS VISUALIZE AND UNDERSTAND THESE STEPS THROUGH MODELS, DIAGRAMS, AND GUIDED QUESTIONING.

#### REGULATION OF TRANSCRIPTION

Transcriptional regulation is a complex process involving transcription factors, enhancers, silencers, and epigenetic modifications. These regulatory elements determine when, where, and how much of a gene is expressed. POGIL-based learning enables students to actively explore how these factors influence gene expression, reinforcing key concepts and promoting analytical thinking.

### POGIL ACTIVITIES FOR TEACHING TRANSCRIPTION

POGIL ACTIVITIES ARE DESIGNED TO TRANSFORM PASSIVE LEARNING INTO ACTIVE EXPLORATION. IN POGIL GENE EXPRESSION TRANSCRIPTION LESSONS, STUDENTS WORK IN SMALL GROUPS, USING GUIDED WORKSHEETS AND MODELS TO INVESTIGATE THE TRANSCRIPTION PROCESS. INSTRUCTORS ACT AS FACILITATORS, PROMPTING DISCUSSION, AND ENCOURAGING STUDENTS TO EXPLAIN THEIR REASONING. THIS COLLABORATIVE ENVIRONMENT NOT ONLY CLARIFIES DIFFICULT CONCEPTS BUT ALSO BUILDS TEAMWORK AND COMMUNICATION SKILLS ESSENTIAL FOR SCIENTIFIC INQUIRY.

### STRUCTURE OF A POGIL ACTIVITY

Model: Visual or conceptual representation of transcription (e.g., DNA to mRNA diagrams).

- GUIDED QUESTIONS: SCAFFOLDED QUESTIONS THAT LEAD STUDENTS FROM BASIC OBSERVATION TO COMPLEX ANALYSIS.
- Roles: Each group member is assigned a specific role (manager, recorder, spokesperson, etc.) to ensure active participation.
- APPLICATION: REAL-WORLD SCENARIOS OR PROBLEMS THAT REQUIRE APPLICATION OF TRANSCRIPTION CONCEPTS.

THIS STRUCTURE PROMOTES ENGAGEMENT AND HELPS STUDENTS IDENTIFY MISCONCEPTIONS AS THEY WORK THROUGH THE TOPIC COLLABORATIVELY.

### KEY COMPONENTS OF A POGIL GENE EXPRESSION TRANSCRIPTION ACTIVITY

EFFECTIVE POGIL GENE EXPRESSION TRANSCRIPTION ACTIVITIES INTEGRATE SEVERAL ESSENTIAL COMPONENTS TO SUPPORT LEARNING GOALS. THESE INCLUDE CLEAR LEARNING OBJECTIVES, WELL-DESIGNED MODELS, AND A SEQUENCE OF QUESTIONS THAT PROGRESS FROM SIMPLE RECALL TO HIGHER-ORDER THINKING. ACTIVITIES OFTEN INCORPORATE FORMATIVE ASSESSMENT, ALLOWING INSTRUCTORS TO GAUGE STUDENT UNDERSTANDING AND PROVIDE FEEDBACK IN REAL TIME.

### EXAMPLES OF POGIL ACTIVITY ELEMENTS

- EXPLORING THE STRUCTURE OF DNA AND RNA
- MODELING THE BINDING OF RNA POLYMERASE TO THE PROMOTER REGION
- TRACING THE SYNTHESIS OF AN MRNA STRAND FROM A DNA TEMPLATE
- ANALYZING MUTATIONS THAT AFFECT TRANSCRIPTION
- INVESTIGATING REGULATORY SEQUENCES AND THEIR IMPACT ON GENE EXPRESSION

THESE ELEMENTS HELP STUDENTS BUILD A COMPREHENSIVE UNDERSTANDING OF TRANSCRIPTION AND ITS ROLE WITHIN GENE EXPRESSION.

### BENEFITS OF POGIL FOR LEARNING TRANSCRIPTION

POGIL offers several advantages when teaching complex biological processes like transcription. By engaging students in active learning, pogil gene expression transcription activities foster deeper conceptual understanding and long-term retention. Students learn to analyze data, interpret models, and apply concepts to novel situations. The collaborative nature of POGIL also enhances communication, teamwork, and problem-solving abilities, preparing students for future scientific challenges.

### KEY BENEFITS OF POGIL

- PROMOTES CRITICAL THINKING AND INQUIRY
- ENCOURAGES ACTIVE PARTICIPATION
- SUPPORTS DIVERSE LEARNING STYLES

- FACILITATES PER TEACHING AND COLLABORATION
- IMPROVES ACADEMIC PERFORMANCE AND CONFIDENCE

### COMMON MISCONCEPTIONS ADDRESSED IN POGIL

Many students enter biology courses with misconceptions about gene expression and transcription. POGIL activities are specifically designed to confront and correct these misunderstandings by encouraging students to explore models, answer probing questions, and discuss their ideas. Common misconceptions include confusing transcription with translation, misunderstanding the directionality of RNA synthesis, and misidentifying the role of promoters and terminators.

### How POGIL Overcomes Misconceptions

THROUGH GUIDED INQUIRY AND COLLABORATIVE EXPLORATION, STUDENTS CLARIFY KEY CONCEPTS AND DEVELOP ACCURATE MENTAL MODELS. IMMEDIATE FEEDBACK FROM PEERS AND INSTRUCTORS FURTHER REINFORCES CORRECT UNDERSTANDING, MAKING POGIL GENE EXPRESSION TRANSCRIPTION A POWERFUL APPROACH FOR ADDRESSING PERSISTENT MISCONCEPTIONS.

### ASSESSMENT AND EVALUATION IN POGIL-BASED LEARNING

Assessment is an integral part of pogil gene expression transcription activities. Formative assessment occurs throughout the POGIL process, allowing instructors to monitor student progress and adjust instruction as needed. Summative assessments, such as quizzes, presentations, or group reports, evaluate students' mastery of transcription concepts and their ability to apply knowledge in new contexts.

### METHODS OF ASSESSMENT IN POGIL

- GROUP DISCUSSIONS AND PRESENTATIONS
- WRITTEN REFLECTIONS OR EXIT TICKETS
- QUIZZES BASED ON POGIL ACTIVITY OUTCOMES
- PEER AND SELF-ASSESSMENT OF GROUP PARTICIPATION

THESE ASSESSMENT TECHNIQUES ENSURE THAT LEARNING OBJECTIVES ARE MET AND THAT STUDENTS ARE PREPARED FOR MORE ADVANCED STUDY IN MOLECULAR BIOLOGY.

# FUTURE DIRECTIONS IN POGIL GENE EXPRESSION TRANSCRIPTION EDUCATION

THE INTEGRATION OF POGIL INTO GENE EXPRESSION AND TRANSCRIPTION INSTRUCTION CONTINUES TO EVOLVE. EDUCATORS ARE DEVELOPING NEW MODELS, DIGITAL RESOURCES, AND ASSESSMENT TOOLS TO ENHANCE THE EFFECTIVENESS OF POGIL GENE EXPRESSION TRANSCRIPTION ACTIVITIES. ADVANCES IN MOLECULAR BIOLOGY AND TECHNOLOGY OFFER OPPORTUNITIES TO INCORPORATE REAL-WORLD DATA, BIOINFORMATICS, AND SIMULATIONS INTO GUIDED INQUIRY LEARNING. AS EDUCATIONAL RESEARCH PROGRESSES, POGIL WILL REMAIN A CORNERSTONE OF EVIDENCE-BASED SCIENCE EDUCATION, EQUIPPING STUDENTS WITH THE SKILLS AND KNOWLEDGE NEEDED TO EXCEL IN GENETICS AND BIOTECHNOLOGY.

### Q: WHAT IS POGIL GENE EXPRESSION TRANSCRIPTION?

A: POGIL GENE EXPRESSION TRANSCRIPTION REFERS TO USING THE POGIL (PROCESS ORIENTED GUIDED INQUIRY LEARNING) INSTRUCTIONAL APPROACH TO TEACH THE PROCESS OF GENE EXPRESSION, WITH A FOCUS ON TRANSCRIPTION, WHICH IS THE FIRST STEP OF CONVERTING DNA INTO RNA. IT ENGAGES STUDENTS IN UNDERSTANDING HOW GENETIC INFORMATION IS TRANSCRIBED IN CELLS THROUGH COLLABORATIVE AND INQUIRY-BASED ACTIVITIES.

### Q: WHY IS TRANSCRIPTION IMPORTANT IN GENE EXPRESSION?

A: Transcription is vital because it is the process by which genetic information from DNA is copied into messenger RNA. This mRNA serves as the template for protein synthesis, making transcription essential for gene expression and the functioning of Living organisms.

### Q: How does POGIL IMPROVE LEARNING ABOUT TRANSCRIPTION?

A: POGIL enhances learning by actively engaging students in exploring models, asking questions, and solving problems related to transcription. It promotes teamwork, critical thinking, and deeper understanding compared to traditional lecture-based teaching.

### Q: WHAT ARE THE MAIN STEPS OF TRANSCRIPTION COVERED IN POGIL ACTIVITIES?

A: THE MAIN STEPS INCLUDE INITIATION (BINDING OF RNA POLYMERASE TO THE PROMOTER), ELONGATION (SYNTHESIS OF THE RNA STRAND), AND TERMINATION (RELEASE OF THE MRNA TRANSCRIPT). STUDENTS EXPLORE THESE STAGES IN DETAIL USING GUIDED INQUIRY.

# Q: WHAT COMMON MISCONCEPTIONS ABOUT TRANSCRIPTION ARE ADDRESSED IN POGIL?

A: POGIL ACTIVITIES HELP CLARIFY MISCONCEPTIONS SUCH AS CONFUSING TRANSCRIPTION WITH TRANSLATION, MISUNDERSTANDING THE DIRECTION OF RNA SYNTHESIS, AND THE ROLES OF PROMOTERS AND TERMINATORS IN GENE EXPRESSION.

### Q: WHAT ROLES DO STUDENTS TYPICALLY HAVE IN POGIL GROUPS?

A: Roles often include manager (organizes the group), recorder (takes notes), spokesperson (shares answers), and reflector (monitors group progress), ensuring each member contributes to the activity.

# Q: How are students assessed in pogil gene expression transcription activities?

A: ASSESSMENT METHODS INCLUDE GROUP PRESENTATIONS, WRITTEN REFLECTIONS, QUIZZES, AND PEER/SELF-ASSESSMENT, FOCUSING ON BOTH CONTENT MASTERY AND PROCESS SKILLS DEVELOPED DURING THE ACTIVITY.

### Q: CAN POGIL BE USED FOR ADVANCED TOPICS IN GENE EXPRESSION?

A: YES, POGIL IS ADAPTABLE AND CAN BE USED FOR MORE COMPLEX GENE REGULATION TOPICS, SUCH AS EPIGENETICS, OPERON MODELS, AND POST-TRANSCRIPTIONAL MODIFICATIONS, BY DESIGNING APPROPRIATE MODELS AND INQUIRY QUESTIONS.

# Q: WHAT SKILLS DO STUDENTS DEVELOP THROUGH POGIL GENE EXPRESSION TRANSCRIPTION?

A: STUDENTS DEVELOP CRITICAL THINKING, PROBLEM-SOLVING, TEAMWORK, SCIENTIFIC COMMUNICATION, AND THE ABILITY TO APPLY MOLECULAR BIOLOGY CONCEPTS TO REAL-WORLD SITUATIONS.

### Q: How does POGIL support students with different learning styles?

A: POGIL ACTIVITIES USE VISUAL MODELS, HANDS-ON INQUIRY, DISCUSSION, AND WRITTEN RESPONSES, ACCOMMODATING DIVERSE LEARNING PREFERENCES AND HELPING ALL STUDENTS ENGAGE WITH GENE EXPRESSION TRANSCRIPTION CONCEPTS FFFFCTIVELY.

# **Pogil Gene Expression Transcription**

Find other PDF articles:

 $\underline{https://fc1.getfilecloud.com/t5-w-m-e-07/pdf?trackid=qIK43-0562\&title=lab-activity-kool-aid-concentration-answers.pdf}$ 

# POGIL Gene Expression: Transcription - A Deep Dive

Unlocking the secrets of gene expression is a cornerstone of modern biology. This intricate process, fundamental to life itself, is often explored using the Problem-Oriented Guided Inquiry Learning (POGIL) method. This post provides a comprehensive guide to understanding gene expression, specifically focusing on transcription, using the POGIL approach. We'll break down the complex mechanisms, provide practical examples, and offer insights to help you master this crucial biological concept. Prepare to delve into the fascinating world of DNA, RNA, and the intricate dance of gene regulation!

# **Understanding Gene Expression: The Central Dogma**

Before diving into transcription, it's crucial to understand the broader context of gene expression. This process, often summarized as the "central dogma of molecular biology," describes the flow of genetic information from DNA to RNA to protein. This flow dictates the characteristics and functions of an organism.

# The Three Key Stages:

Transcription: The process of creating an RNA molecule from a DNA template. This is our primary focus in this post.

RNA Processing: Modifications to the newly synthesized RNA molecule, like splicing and capping, to

prepare it for translation.

Translation: The synthesis of a protein based on the information encoded in the messenger RNA (mRNA) molecule.

# POGIL and the Learning Process: A Collaborative Approach

POGIL activities promote active learning through collaborative problem-solving. Instead of passively receiving information, students actively engage with concepts, discuss ideas, and build a deeper understanding. Applying the POGIL approach to gene expression, and specifically transcription, fosters critical thinking and collaborative learning.

### **How POGIL Enhances Understanding of Transcription:**

POGIL activities on transcription might involve:

Analyzing hypothetical scenarios: Students might analyze a given DNA sequence and predict the resulting mRNA sequence after transcription.

Problem-solving through group discussions: Groups work together to solve problems related to transcription factors, promoters, and other regulatory elements.

Interpreting experimental data: Students interpret data from experiments related to transcription, such as those involving gene knockouts or overexpression.

Developing models and diagrams: Students construct models to visually represent the transcription process, enhancing comprehension.

# **Decoding Transcription: The Molecular Mechanism**

Transcription is the first step in gene expression, converting the genetic information encoded in DNA into a messenger RNA (mRNA) molecule. This process involves several key players:

# **Key Players in Transcription:**

DNA: The template containing the genetic code.

RNA Polymerase: The enzyme responsible for synthesizing the RNA molecule.

Promoter: A specific DNA sequence that signals the starting point of transcription.

Transcription Factors: Proteins that bind to the promoter and regulate the initiation of transcription.

Terminator: A DNA sequence that signals the end of transcription.

# The Steps of Transcription:

- 1. Initiation: RNA polymerase binds to the promoter region of the DNA, aided by transcription factors.
- 2. Elongation: RNA polymerase unwinds the DNA double helix and synthesizes a complementary RNA molecule using the DNA template strand.
- 3. Termination: RNA polymerase reaches the terminator sequence, causing it to detach from the DNA and release the newly synthesized RNA molecule.

# **Beyond the Basics: Exploring Regulatory Mechanisms**

Transcription isn't a simple on/off switch. Many factors regulate the process, ensuring genes are expressed only when and where needed. This fine-tuned control is essential for cellular function and organismal development.

# **Regulatory Elements and Mechanisms:**

Enhancers and Silencers: DNA sequences that can increase (enhancers) or decrease (silencers) the rate of transcription.

Epigenetics: Chemical modifications to DNA or histones that affect gene expression without altering the DNA sequence itself.

RNA Interference (RNAi): A mechanism where small RNA molecules can inhibit gene expression by targeting mRNA for degradation.

# **Applying POGIL to Advanced Transcription Concepts**

POGIL's collaborative nature is particularly effective when tackling complex topics in gene expression. Students can collaboratively analyze the impact of mutations in promoters, explore the roles of various transcription factors, and even design hypothetical experiments to test their understanding of regulatory mechanisms. These activities promote a deep understanding far beyond rote memorization.

# **Conclusion**

Understanding gene expression, specifically the process of transcription, is paramount to comprehending fundamental biological processes. The POGIL method provides a dynamic and effective approach to learning these complex concepts. By actively engaging in problem-solving and collaborative discussions, students develop a comprehensive understanding that extends beyond simple memorization. The collaborative nature of POGIL ensures a thorough grasp of the intricate mechanisms involved in gene regulation. This deeper understanding is crucial for tackling more advanced topics in molecular biology and beyond.

# **FAQs**

- 1. What is the difference between DNA and RNA? DNA is a double-stranded molecule that stores genetic information, while RNA is a single-stranded molecule involved in gene expression. RNA contains uracil (U) instead of thymine (T) found in DNA.
- 2. What is the role of RNA polymerase in transcription? RNA polymerase is the enzyme responsible for synthesizing the RNA molecule by adding nucleotides complementary to the DNA template strand.
- 3. How do transcription factors regulate gene expression? Transcription factors bind to specific DNA sequences (promoters, enhancers, silencers) influencing the ability of RNA polymerase to bind and initiate transcription, ultimately controlling gene expression levels.
- 4. What are some examples of diseases caused by errors in transcription? Errors in transcription can lead to various diseases. For example, mutations affecting transcription factors can cause developmental disorders, while errors in RNA processing can contribute to various cancers.
- 5. How can POGIL activities be adapted for different learning levels? POGIL activities can be adapted by adjusting the complexity of the problems, the level of guidance provided, and the amount of prior knowledge assumed. This allows for differentiation in the classroom to meet diverse student needs.

pogil gene expression transcription: Biology for AP ® Courses Julianne Zedalis, John Eggebrecht, 2017-10-16 Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board's AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.

**pogil gene expression transcription: Principles of Biology** Lisa Bartee, Walter Shiner, Catherine Creech, 2017 The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.

pogil gene expression transcription: A Handbook of Transcription Factors Timothy R.

Hughes, 2011-05-10 Transcription factors are the molecules that the cell uses to interpret the genome: they possess sequence-specific DNA-binding activity, and either directly or indirectly influence the transcription of genes. In aggregate, transcription factors control gene expression and genome organization, and play a pivotal role in many aspects of physiology and evolution. This book provides a reference for major aspects of transcription factor function, encompassing a general catalogue of known transcription factor classes, origins and evolution of specific transcription factor types, methods for studying transcription factor binding sites in vitro, in vivo, and in silico, and mechanisms of interaction with chromatin and RNA polymerase.

pogil gene expression transcription: Eukaryotic Transcription Factors David S. Latchman, 2010-07-28 Transcription, or the process by which DNA produces RNA, is a central aspect of gene expression. Transcription factors regulate transcription during development and in disease states. As such, it is critical for researchers to gain a good understanding of the relationship between the structure of various families of transcription factors and their function, as well as roles in human disease. Since publication of the Fourth Edition, there have been major advances, notably in the areas of chromatin remodeling and genome-scale analyses. This complete update includes all new coverage of the latest developments, from enabling genomic technologies to studies on the importance of post-translational modifications beyond phosphorylation events. - Potential of transcription factors as therapeutic targets in human disease - Importance of histone modifications - Use of genome-based sequence analysis and high-throughput methods - Applications of the chromatin immunoprecipitation (ChIP) assay - Transcriptional elongation - Regulation by post-translational modifications - Regulatory networks and bioinformatics

pogil gene expression transcription: Preparing for the Biology AP Exam Neil A. Campbell, Jane B. Reece, Fred W. Holtzclaw, Theresa Knapp Holtzclaw, 2009-11-03 Fred and Theresa Holtzclaw bring over 40 years of AP Biology teaching experience to this student manual. Drawing on their rich experience as readers and faculty consultants to the College Board and their participation on the AP Test Development Committee, the Holtzclaws have designed their resource to help your students prepare for the AP Exam. Completely revised to match the new 8th edition of Biology by Campbell and Reece. New Must Know sections in each chapter focus student attention on major concepts. Study tips, information organization ideas and misconception warnings are interwoven throughout. New section reviewing the 12 required AP labs. Sample practice exams. The secret to success on the AP Biology exam is to understand what you must know and these experienced AP teachers will guide your students toward top scores!

**pogil gene expression transcription:** Transcription and Splicing B. D. Hames, David M. Glover, 1988 This book gives a co-ordinated review of our present knowledge of eukaryotic RNA synthesis.

pogil gene expression transcription: The Making of the Fittest: DNA and the Ultimate Forensic Record of Evolution Sean B. Carroll, 2007-08-28 A geneticist discusses the role of DNA in the evolution of life on Earth, explaining how an analysis of DNA reveals a complete record of the events that have shaped each species and how it provides evidence of the validity of the theory of evolution.

pogil gene expression transcription: POGIL Activities for AP Biology , 2012-10 pogil gene expression transcription: Gene Regulation in Eukaryotes Edgar Wingender, 1993 A much-needed guide through the overwhelming amount of literature in the field. Comprehensive and detailed, this book combines background information with the most recentinsights. It introduces current concepts, emphasizing the transcriptional control of genetic information. Moreover, it links data on the structure of regulatory proteins with basic cellular processes. Both advanced students and experts will find answers to such intriguing questions as: - How are programs of specific gene repertoires activated and controlled? - Which genes drive and control morphogenesis? - Which genes govern tissue-specific tasks? - How do hormones control gene expression in coordinating the activities of different tissues? An abundant number of clearly presented glossary terms facilitates understanding of the biological background. Speacial feature: over 2200 (!) literature references.

pogil gene expression transcription: Eukaryotic Gene Expression Ajit Kumar, 2013-03-09 The recent surge of interest in recombinant DNA research is understandable considering that biologists from all disciplines, using recently developed mo lecular techniques, can now study with great precision the structure and regulation of specific genes. As a discipline, molecular biology is no longer a mere subspeciality of biology or biochemistry: it is the new biology. Current approaches to the outstanding problems in virtually all the traditional disci plines in biology are now being explored using the recombinant DNA tech nology. In this atmosphere of rapid progress, the role of information exchange and swift publication becomes quite crucial. Consequently, there has been an equally rapid proliferation of symposia volumes and review articles, apart from the explosion in popular science magazines and news media, which are always ready to simplify and sensationalize the implications of recent dis coveries, often before the scientific community has had the opportunity to fully scrutinize the developments. Since many of the recent findings in this field have practical implications, quite often the symposia in molecular biology are sponsored by private industry and are of specialized interest and in any case quite expensive for students to participate in. Given that George Wash ington University is a teaching institution, our aim in sponsoring these Annual Spring Symposia is to provide, at cost, a forum for students and experts to discuss the latest developments in selected areas of great significance in biology. Additionally, since the University is located in Washington, D. C.

pogil gene expression transcription: Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression Marianne Grunberg-Manago, 2012-12-02 Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression presents the proceedings of the Fogarty International Conference on Translational/Transcriptional Regulation of Gene Expression, held at the National Institutes of Health in Bethesda, Maryland, on April 7-9, 1982. Speakers discussed the molecular strategies at work during the modulation of gene expression following transcriptional initiation. They also discussed recent developments in a number of key areas in which transcriptional and translational components interact. Organized into five sections encompassing 36 chapters, this volume explores both prokaryotic and eukaryotic systems, as well as structure-function correlations. It begins with an overview of translational/transcriptional controls in prokaryotes, the regulation of gene expression by transcription termination and RNA processing, and the structure and expression of initiation factor genes. It then examines the effect of the codon context on translational fidelity, including mistranslation of messenger RNA; protein synthesis for the construction of cell architecture; regulation of initiation factor activity; and translational regulation in cells. This book is a valuable resource for Fogarty International Scholars who want to broaden their knowledge and contribute their expertise to the National Institutes of Health community.

pogil gene expression transcription: Transcription Factors Joseph Locker, 2003-12-16 Transcription factors are important in regulating gene expression, and their analysis is of paramount interest to molecular biologists studying this area. This book looks at the basic machinery of the cell involved in transcription in eukaryotes and factors that control transcription in eukaryotic cells. It examines the regulatory systems that modulate gene expression in all cells, as well as the more specialized systems that regulate localized gene expression throughout the mammalian organism. Transcription Factors updates classical knowledge with recent advances to provide a full and comprehensive coverage of the field for postgraduates and researchers in molecular biology involved in the study of gene regulation.

**pogil gene expression transcription: Basic Concepts in Biochemistry: A Student's Survival Guide** Hiram F. Gilbert, 2000 Basic Concepts in Biochemistry has just one goal: to review the toughest concepts in biochemistry in an accessible format so your understanding is through and complete.--BOOK JACKET.

**pogil gene expression transcription: Transcription** William M. Brown, Philip M. Brown, 2001-09-20 Knowledge of transcription has moved forward at a furious pace over recent years, and an understanding of the processes involved in gene regulation and expression has become an

essential element in biochemistry, genome biology, molecular biology and molecular genetics. In this timely book, the authors present an accessible, yet comprehensive, coverage suitable for students at a senior undergraduate level, and for postgraduates needing an overview of the current state of play. It covers a number of pertinent examples of transcription systems for eukaryotes and prokaryotes, indicates methods for studying transcription, and surveys the whole topic of transcription from many perspectives.

pogil gene expression transcription: Teaching at Its Best Linda B. Nilson, 2010-04-20 Teaching at Its Best This third edition of the best-selling handbook offers faculty at all levels an essential toolbox of hundreds of practical teaching techniques, formats, classroom activities, and exercises, all of which can be implemented immediately. This thoroughly revised edition includes the newest portrait of the Millennial student; current research from cognitive psychology; a focus on outcomes maps; the latest legal options on copyright issues; and how to best use new technology including wikis, blogs, podcasts, vodcasts, and clickers. Entirely new chapters include subjects such as matching teaching methods with learning outcomes, inquiry-guided learning, and using visuals to teach, and new sections address Felder and Silverman's Index of Learning Styles, SCALE-UP classrooms, multiple true-false test items, and much more. Praise for the Third Edition of Teaching at Its BestEveryone veterans as well as novices will profit from reading Teaching at Its Best, for it provides both theory and practical suggestions for handling all of the problems one encounters in teaching classes varying in size, ability, and motivation. Wilbert McKeachie, Department of Psychology, University of Michigan, and coauthor, McKeachie's Teaching TipsThis new edition of Dr. Nilson's book, with its completely updated material and several new topics, is an even more powerful collection of ideas and tools than the last. What a great resource, especially for beginning teachers but also for us veterans! L. Dee Fink, author, Creating Significant Learning ExperiencesThis third edition of Teaching at Its Best is successful at weaving the latest research on teaching and learning into what was already a thorough exploration of each topic. New information on how we learn, how students develop, and innovations in instructional strategies complement the solid foundation established in the first two editions. Marilla D. Svinicki, Department of Psychology, The University of Texas, Austin, and coauthor, McKeachie's Teaching Tips

pogil gene expression transcription: *The Operon* Jeffrey H. Miller, William S. Reznikoff, 1980 pogil gene expression transcription: **The Molecular Basis of Heredity** A.R. Peacocke, R.B. Drysdale, 2013-12-17

**pogil gene expression transcription:** The Double Helix James D. Watson, 1969-02 Since its publication in 1968, The Double Helix has given countless readers a rare and exciting look at one highly significant piece of scientific research-Watson and Crick's race to discover the molecular structure of DNA.

pogil gene expression transcription: The Hormonal Control of Gene Transcription P. Cohen, J.G. Foulkes, 2012-12-02 Over the past few years there have been considerable advances in our understanding of cellular control mechanisms, and current research is now linking areas of biology that were previously thought of as being quite separate. Molecular Aspects of Cellular Regulation is a series of occasional books on multidisciplinary topics which illustrate general principles of cellular regulation. Previous volumes described Recently Discovered Systems of Enzyme Regulation by Reversible Phosphorylation (Volumes 1 and 3), The Molecular Actions of Toxins and Viruses (Volume 2), Molecular Mechanisms of Transmembrane Signalling (Volume 4) and Calmodulin (Volume 5). This sixth volume, The Hormonal Control of Gene Transcription, has now been published to highlight recent important advances in our understanding of this topic which is linking two of the most active areas of current biochemical and molecular biological research (hormone action and gene transcription) and leading to the emergence of unifying concepts.

**pogil gene expression transcription: Gene Expression** M. Karin, 2013-03-08 This book is the first volume in a new series Progress in Gene Expres sion. The control of gene expression is a central-most topic in molecular biology as it deals with the utilization and regulation of gene information. As we see huge efforts mounting all over the developed world to understand the structure and

organization of several complex eukaryotic genomes in the form of Gene Projects and Genome Centers, we have to remember that without understanding the basic mechanisms that gov ern the use of genetic information, much of this effort will not be very productive. Fortunately, however, research during the past seven years on the mechanisms that control gene expression in eukaryotes has been extremely successful in generating a wealth of information on the basic strategies of transcriptional control. (Although regulation of gene ex pression is exerted at many different levels, much of the emphasis in this series will be on transcriptional control. A future volume, however, will deal with other levels of regulation). The progress in understanding the control of eukaryotic transcription can only be appreciated by realizing that seven years ago we did not know the primary structure of a single sequence specific transcriptional activator, and those whose primary structures were available (e. g., homeo domain proteins) were not yet recognized to function in this capacity.

**pogil gene expression transcription:** Focus on Life Science California Michael J. Padilla, 2008 Provides many approaches to help students learn science: direct instruction from the teacher, textbooks and supplementary materials for reading, and laboratory investigations and experiments to perform. It also provides for the regular teaching and practice of reading and vocabulary skills students need to use a science textbook successfully.

**pogil gene expression transcription: Gene Structure and Transcription** Trevor John Clark Beebee, Julian Burke, 1988 Emphasizing exciting recent developments in the study of gene structure and transcription processes, this compares and contrasts euykaryotic and prokaryotic gene structure, transcription apparatus and regulation of transcription at molecular level.

pogil gene expression transcription: The Pancreatic Beta Cell , 2014-02-20 First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. The Series provides up-to-date information on vitamin and hormone research spanning data from molecular biology to the clinic. A volume can focus on a single molecule or on a disease that is related to vitamins or hormones. A hormone is interpreted broadly so that related substances, such as transmitters, cytokines, growth factors and others can be reviewed. This volume focuses on the pancreatic beta cell. - Expertise of the contributors - Coverage of a vast array of subjects - In depth current information at the molecular to the clinical levels - Three-dimensional structures in color - Elaborate signaling pathways

pogil gene expression transcription: Adapted Primary Literature Anat Yarden, Stephen P. Norris, Linda M. Phillips, 2015-03-16 This book specifies the foundation for Adapted Primary Literature (APL), a novel text genre that enables the learning and teaching of science using research articles that were adapted to the knowledge level of high-school students. More than 50 years ago, J.J. Schwab suggested that Primary Scientific Articles "afford the most authentic, unretouched specimens of enquiry that we can obtain" and raised for the first time the idea that such articles can be used for "enquiry into enquiry". This book, the first to be published on this topic, presents the realization of this vision and shows how the reading and writing of scientific articles can be used for inquiry learning and teaching. It provides the origins and theory of APL and examines the concept and its importance. It outlines a detailed description of creating and using APL and provides examples for the use of the enactment of APL in classes, as well as descriptions of possible future prospects for the implementation of APL. Altogether, the book lays the foundations for the use of this authentic text genre for the learning and teaching of science in secondary schools.

**pogil gene expression transcription:** Genetics Benjamin A. Pierce, 2013-12-27 With Genetics: A Conceptual Approach, Pierce brings a master teacher's experiences to the introductory genetics textbook, clarifying this complex subject by focusing on the big picture of genetics concepts. The new edition features an emphasis on problem-solving and relevant applications, while incorporating the latest trends in genetics research.

**pogil gene expression transcription:** <u>Inducible Gene Expression, Volume 1</u> P.A. Baeuerle, 2013-12-01 Cells have evolved multiple strategies to adapt the composition and quality of their protein equipment to needs imposed by changes in intra- and extracellular conditions. The appearance of pro teins transmit ting novel functional properties to cells can be controlled at a

transcrip tional, posttranscriptional, translational or posttranslational level. Extensive research over the past 15 years has shown that transcriptional regulation is used as the predominant strategy to control the production of new proteins in response to extracellular stimuli. At the level of gene transcription, the initiation ofmRNA synthesis is used most frequently to govern gene expression. The key elements controlling transcription initiation in eukaryotes are activator proteins (transactivators) that bind in a sequence-specific manner to short DNA sequences in the of genes. The activator binding sites are elements of larger proximity control units, ca lied promoters and enhancers, which bind many distinct proteins. These may synergize or negatively cooperate with the activators. The do novo binding of an activator to DNA or, if already bound to DNA, its functional activation is what ultimately turns on a high-level expression of genes. The activity of transactivators is controlled by signalling pathways and, in some cases, transactivators actively partici pate in signal transduction by moving from the cytoplasm into the nuc1eus. In this first volume of Inducible Gene Expression, leading scientists in the field review six eukaryotic transactivators that allow cells to respond to various extracellular stimuli by the expression of new proteins.

pogil gene expression transcription: Control of Messenger RNA Stability Joel Belasco, Joel G. Belasco, George Brawerman, 1993-04-06 This is the first comprehensive review of mRNA stability and its implications for regulation of gene expression. Written by experts in the field, Control of Messenger RNA Stability serves both as a reference for specialists in regulation of mRNA stability and as a general introduction for a broader community of scientists. Provides perspectives from both prokaryotic and eukaryotic systems Offers a timely, comprehensive review of mRNA degradation, its regulation, and its significance in the control of gene expression Discusses the mechanisms, RNA structural determinants, and cellular factors that control mRNA degradation Evaluates experimental procedures for studying mRNA degradation

pogil gene expression transcription: Regulation of Transcription and Translation in Eukaryotes Ekkehard K.F. Bautz, P. Karlson, H. Kersten, 2012-12-06 This volume represents the proceedings of the 24th Mos bach Colloquium on Regulation of Transcription and Trans lation in Eukaryotes which was held April 26-28, 1973, in Mosbach, Germany, under the auspices of the Gesellschaft für Biologische Chemie. To the three of us (H. KERSTEN, P. KARLSON and myself) who were commissioned with the invitation of speakers, it was a difficult decision as to whether we should attempt to cover with some twenty contributions as many aspects of this broad topic as possible, or to sacrifice the intellectually perhaps more pleasing but more specula tive concepts and to concentrate on a few aspects of gene expression in reasonable detail. We unanimously decided on the latter course, leaving such important and timely topics as for example, hormone action, cyclic AMP and reverse transcription to the proceedings of other symposia, and con centrating on the four questions which are most basic to an understanding of the mechanisms of transcription and trans lation and for which fragmentary but nonetheless reliable experimental results have become available within the last few years. These are the structure of chromatin, the syn thesis of messenger RNA, the structure of the active ribo some, and the role of initiation factors in protein synthesis.

pogil gene expression transcription: Mechanisms of Gene Expression Robert O. J. Weinzierl, 1999 This book presents much of the current thinking concerning molecular mechanisms of transcriptional control in a form easily accessible to undergraduates with an understanding of basic molecular biology concepts. It contains detailed information about the various pro- and eukaryotic transcriptional machineries that has recently become available through the combined efforts of geneticists, biochemists and structural biologists. The book will thus not only serve as an undergraduate text but also offer something new and interesting to more advanced readers and professional scientists who want to keep up to date with rapid advances in this field.--BOOK JACKET. Title Summary field provided by Blackwell North America, Inc. All Rights Reserved

**pogil gene expression transcription: Cell-Free Gene Expression** Ashty S. Karim, Michael C. Jewett, 2022-01-06 This detailed volume explores perspectives and methods using cell-free expression (CFE) to enable next-generation synthetic biology applications. The first section focuses on tools for CFE systems, including a primer on DNA handling and reproducibility, as well as

methods for cell extract preparation from diverse organisms and enabling high-throughput cell-free experimentation. The second section provides an array of applications for CFE systems, such as metabolic engineering, membrane-based and encapsulated CFE, cell-free sensing and detection, and educational kits. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cell-Free Gene Expression: Methods and Protocols serves as an ideal guide for researchers seeking technical methods to current aspects of CFE and related applications.

pogil gene expression transcription: Gene Regulation : A Eukaryotic Perspective David S. Latchman, 1990-05-24

**pogil gene expression transcription: Resistance of Pseudomonas Aeruginosa** Michael Robert Withington Brown, 1975

pogil gene expression transcription: Prokaryotic Gene Expression Simon Baumberg, 1999-05-27 Prokaryotic gene expression is not only of theoretical interest but also of highly practical significance. It has implications for other biological problems, such as developmental biology and cancer, brings insights into genetic engineering and expression systems, and has consequences for important aspects of applied research. For example, the molecular basis of bacterial pathogenicity has implications for new antibiotics and in crop development. Prokaryotic Gene Expression is a major review of the subject, providing up-to-date coverage as well as numerous insights by the prestigious authors. Topics covered include operons; protein recognition of sequence specific DNAand RNA-binding sites; promoters; sigma factors, and variant tRNA polymerases; repressors and activators; post-transcriptional control and attenuation; ribonuclease activity, mRNA stability, and translational repression; prokaryotic DNA topology, topoisomerases, and gene expression; regulatory networks, regulatory cascades and signal transduction; phosphotransfer reactions; switch systems, transcriptional and translational modulation, methylation, and recombination mechanisms; pathogenicity, toxin regulation and virulence determinants; sporulation and genetic regulation of antibiotic production; origins of regulatory molecules, selective pressures and evolution of prokaryotic regulatory mechanisms systems. Over 1100 references to the primary literature are cited. Prokaryotic Gene Expression is a comprehensive and authoritative review of current knowledge and research in the area. It is essential reading for postgraduates and researchers in the field. Advanced undergraduates in biochemistry, molecular biology, and microbiology will also find this book useful.

pogil gene expression transcription: Photoperiodism in Plants Brian Thomas, Daphne Vince-Prue, 1996-10-17 Photoperiodism is the response to the length of the day that enables living organisms to adapt to seasonal changes in their environment as well as latitudinal variation. As such, it is one of the most significant and complex aspects of the interaction between plants and their environment and is a major factor controlling their growth and development. As the new and powerful technologies of molecular genetics are brought to bear on photoperiodism, it becomes particularly important to place new work in the context of the considerable amount of physiological information which already exists on the subject. This innovative book will be of interest to a wide range of plant scientists, from those interested in fundamental plant physiology and molecular biology to agronomists and crop physiologists. - Provides a self-sufficient account of all the important subjects and key literature references for photoperiodism - Includes research of the last twenty years since the publication of the First Edition - Includes details of molecular genetic techniques brought to bear on photoperiodism

**pogil gene expression transcription:** Gene Expression and Regulation in Mammalian Cells Fumiaki Uchiumi, 2018-02-21 Central dogma was presented by Dr. Francis Crick 60 years ago. The information of nucleotide sequences on DNAs is transcribed into RNAs by RNA polymerases. We learned the mechanisms of how transcription determines function of proteins and behaviour of cells and even how it brings appearances of organisms. This book is intended for scientists and medical

researchers especially who are interested in the relationships between transcription and human diseases. This volume consists of an introductory chapter and 14 chapters, divided into 4 parts. Each chapter is written by experts in the basic scientific field. A collection of articles presented by active and laboratory-based investigators provides recent advances and progresses in the field of transcriptional regulation in mammalian cells.

pogil gene expression transcription: Transfer and Expression of Eukaryotic Genes H.S. Ginsberg, 2012-12-02 Transfer and Expression of Eukaryotic Genes documents the progress in our understanding of the transfer and expression of eukaryotic genes. This book covers topics organized around three themes: gene expression and its regulation; in vivo gene transfer and development; and viral gene and oncogene systems. This text is divided into three sections encompassing 25 chapters and begins with an overview of the molecular basis of gene expression, with emphasis on transcription complexes that account for transcription control in eukaryotic genes. It then turns to experiments that assess the in vitro stimulatory effect of the SV40 72-bp repeat on specific transcription from heterologous promoter elements using a HeLa whole cell extract. The reader is methodically introduced to the regulation signals and factors of histone gene transcription; transcriptional control of beta-globin and liver-specific genes in mouse cells; and gene transfer in Drosophila and the sea urchin Strongylocentrotus purpuratus. This book also considers the splicing of messenger RNA precursors and the regulation of thymidine kinase enzyme expression, and then concludes with a chapter that describes the activation of the myc oncogene by chromosomal translocation. This book will be of interest to students and researchers in fields ranging from molecular genetics to microbiology, biochemistry, pathology, and immunology.

**pogil gene expression transcription: Concepts of Biology** Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.

pogil gene expression transcription: Mechanisms of Hormone Action P Karlson, 2013-10-22 Mechanisms of Hormone Action: A NATO Advanced Study Institute focuses on the action mechanisms of hormones, including regulation of proteins, hormone actions, and biosynthesis. The selection first offers information on hormone action at the cell membrane and a new approach to the structure of polypeptides and proteins in biological systems, such as the membranes of cells. Discussions focus on the cell membrane as a possible locus for the hormone receptor; gaps in understanding of the molecular organization of the cell membrane; and a possible model of hormone action at the membrane level. The text also ponders on insulin and regulation of protein biosynthesis, including insulin and protein biosynthesis, insulin and nucleic acid metabolism, and proposal as to the mode of action of insulin in stimulating protein synthesis. The publication elaborates on the action of a neurohypophysial hormone in an elasmobranch fish; the effect of ecdysone on gene activity patterns in giant chromosomes; and action of ecdysone on RNA and protein metabolism in the blowfly, Calliphora erythrocephala. Topics include nature of the enzyme induction, ecdysone and RNA metabolism, and nature of the epidermis nuclear RNA fractions isolated by the Georgiev method. The selection is a valuable reference for readers interested in the mechanisms of hormone action.

pogil gene expression transcription: ACTH Action in the Adrenal Cortex: From Molecular Biology to Pathophysiology Nicole Gallo-Payet, Antoine Martinez, André Lacroix, 2017-07-27 By stimulating adrenal gland and corticosteroid synthesis, the adrenocorticotropic hormone (ACTH) plays a central role in response to stress. In this Research Topic, a particular attention has been given to the recent developments on adrenocortical zonation; the growth-promoting activities of ACTH; the various steps involved in acute and chronic regulation of steroid secretion by ACTH, including the effect of ACTH on circadian rhythms of glucocorticoid secretion. The Research Topic also reviews progress and challenges surrounding the properties of

ACTH binding to the MC2 receptor (MC2R), including the importance of melanocortin-2 receptor accessory protein (MRAP) in MC2R expression and function, the various intracellular signaling cascades, which involve not only protein kinase A, the key mediator of ACTH action, but also phosphatases, phosphodiesterases, ion channels and the cytoskeleton. The importance of the proteins involved in the cell detoxification is also considered, in particular the effect that ACTH has on protection against reactive oxygen species generated during steroidogenesis. The impact of the cellular microenvironment, including local production of ACTH is discussed, both as an important factor in the maintenance of homeostasis, but also in pathological situations, such as severe inflammation. Finally, the Research Topic reviews the role that the pituitary-adrenal axis may have in the development of metabolic disorders. In addition to mutations or alterations of expression of genes encoding components of the steroidogenesis and signaling pathways, chronic stress and sleep disturbance are both associated with hyperactivity of the adrenal gland. A resulting effect is increased glucocorticoid secretion inducing food intake and weight gain, which, in turn, leads to insulin and leptin resistance. These aspects are described in detail in this Research Topic by key investigators in the field. Many of the aspects addressed in this Research Topic still represent a stimulus for future studies, their outcome aimed at providing evidence of the central position occupied by the adrenal cortex in many metabolic functions when its homeostasis is disrupted. An in-depth investigation of the mechanisms underlying these pathways will be invaluable in developing new therapeutic tools and strategies.

pogil gene expression transcription: Regulation of Gene Expression Gary H. Perdew, Jack P. Vanden Heuvel, Jeffrey M. Peters, 2008-08-17 The use of molecular biology and biochemistry to study the regulation of gene expression has become a major feature of research in the biological sciences. Many excellent books and reviews exist that examine the experimental methodology employed in specific areas of molecular biology and regulation of gene expression. However, we have noticed a lack of books, especially textbooks, that provide an overview of the rationale and general experimental approaches used to examine chemically or disease-mediated alterations in gene expression in mammalian systems. For example, it has been difficult to find appropriate texts that examine specific experimental goals, such as proving that an increased level of mRNA for a given gene is attributable to an increase in transcription rates. Regulation of Gene Expression: Molecular Mechanisms is intended to serve as either a textbook for graduate students or as a basic reference for laboratory personnel. Indeed, we are using this book to teach a graduate-level class at The Pennsylvania State University. For more details about this class, please visit http://moltox.cas. psu. edu and select "Courses." The goal for our work is to provide an overview of the various methods and approaches to characterize possible mechanisms of gene regulation. Further, we have attempted to provide a framework for students to develop an understanding of how to determine the various mechanisms that lead to altered activity of a specific protein within a cell.

Back to Home: <a href="https://fc1.getfilecloud.com">https://fc1.getfilecloud.com</a>