
evaluating large language models
trained on code
evaluating large language models trained on code is a critical task in
today’s AI-driven software landscape. As large language models (LLMs)
increasingly power code generation, code review, and developer assistance
tools, the need for robust evaluation frameworks has never been more urgent.
This article explores the best practices and methodologies for assessing LLMs
trained on code, focusing on model accuracy, benchmarking, metrics, real-
world testing, and ethical considerations. Readers will discover how to
implement effective evaluation strategies, understand the unique challenges
posed by code-related tasks, and leverage quantitative and qualitative
metrics for comprehensive analysis. Whether you are a machine learning
researcher, software engineer, or technology leader, this guide will provide
actionable insights into evaluating large language models trained on code,
ensuring reliable performance and responsible deployment. Read on to access
practical techniques and expert knowledge designed to help you navigate this
rapidly evolving field.

Understanding Large Language Models Trained on Code

Key Evaluation Metrics for Code-Focused Language Models

Benchmarking Approaches in Code Model Evaluation

Real-World Testing and Deployment Scenarios

Challenges in Evaluating Code Generation Models

Ethical Considerations in Code LLM Evaluation

Future Directions in Evaluating Code Language Models

Understanding Large Language Models Trained on
Code

Evaluating large language models trained on code requires a firm grasp of how
these models function. LLMs are neural networks that learn patterns in
programming languages by analyzing vast repositories of source code. Unlike
general-purpose LLMs, code-specific models are optimized for tasks such as
code completion, bug detection, refactoring, and documentation generation.
Their training datasets typically include code from open-source projects,
developer forums, and technical documentation, enabling them to understand

context, syntax, and semantics unique to software engineering.

These models are revolutionizing software development by automating routine
tasks, providing intelligent coding suggestions, and even generating entire
applications. However, their performance can vary significantly depending on
the language, framework, and nature of the coding task. Therefore, systematic
evaluation is essential to determine their effectiveness, reliability, and
suitability for specific development environments.

Key Evaluation Metrics for Code-Focused
Language Models

Selecting appropriate metrics is fundamental to evaluating large language
models trained on code. These metrics help quantify model accuracy,
efficiency, and usability in practical coding scenarios. The following are
commonly used metrics in code LLM assessment:

Exact Match Accuracy: Measures whether the generated code matches the
expected output exactly, useful for tasks like code synthesis and
completion.

Pass@k: Evaluates if the correct code is generated within the top-k
model outputs. This is crucial for real-world applications where
multiple valid solutions may exist.

Functional Correctness: Assesses if the generated code performs the
intended function correctly, often validated using unit tests.

Syntax Validity: Checks whether generated code is syntactically correct
for the target programming language.

Semantic Similarity: Measures how closely the model-generated code
aligns with human-written solutions, taking into account variable naming
and structure.

Code Quality: Involves metrics such as maintainability, readability, and
the presence of best practices.

Utilizing a combination of these metrics ensures a comprehensive evaluation,
addressing both correctness and practical utility in software development
workflows.

Benchmarking Approaches in Code Model
Evaluation

Benchmarking is a cornerstone of evaluating large language models trained on
code. By comparing model outputs against established datasets and tasks,
researchers and practitioners can objectively assess performance and
progress.

Popular Benchmark Datasets

Several benchmark datasets have become standards in the field:

HumanEval: Contains coding challenges with input-output pairs for
Python, focusing on code generation and functional correctness.

MBPP (Mostly Basic Python Problems): Features simple coding problems
suitable for measuring code synthesis capabilities.

CodeXGLUE: Offers a diverse suite of tasks, including code
summarization, translation, and defect detection across multiple
languages.

APPS: Presents programming problems ranging from introductory to
advanced, enabling multi-faceted evaluation.

Task-Specific Evaluation

Benchmarking should reflect the intended use case of the model. For example,
code completion models are assessed using next-token prediction and
completion accuracy, while code translation models are evaluated based on
fidelity and compatibility between languages. Diversifying benchmarks ensures
that models are tested under realistic and challenging conditions.

Real-World Testing and Deployment Scenarios

While benchmarks offer valuable insights, real-world testing is crucial for
evaluating large language models trained on code in practical settings.
Deploying models within integrated development environments (IDEs),
continuous integration (CI) pipelines, and software projects exposes them to
authentic scenarios and user interactions.

Simulating Developer Workflows

Effective evaluation involves simulating tasks that developers perform daily:

Code completion and autocompletion

Automated bug fixing and refactoring

Code review and commenting

Generating documentation from source code

Measuring model performance in these contexts ensures practical relevance and
highlights strengths and weaknesses that may not be apparent in benchmark-
only testing.

User Feedback and Usability

Collecting feedback from software engineers and beta testers provides
qualitative data on usability, code quality, and integration challenges. User
studies and surveys complement quantitative metrics, offering a holistic view
of model performance in the field.

Challenges in Evaluating Code Generation Models

Evaluating large language models trained on code presents unique challenges
compared to natural language tasks. Code is highly structured, context-
dependent, and often requires domain-specific knowledge. Below are some of
the main obstacles:

Multiple Correct Solutions: Many coding problems allow for diverse valid1.
implementations, complicating exact match and similarity-based
evaluations.

Security and Safety Risks: Automatically generated code may introduce2.
vulnerabilities or unsafe patterns, requiring additional scrutiny during
evaluation.

Generalization Across Languages: LLMs trained on one language may not3.
perform equally well on others, making cross-language evaluation
necessary.

Bias in Training Data: Training datasets may contain outdated,4.
suboptimal, or insecure coding practices, affecting model output

quality.

Scalability of Testing: Exhaustively testing all possible inputs and5.
edge cases is often infeasible for complex models.

Addressing these challenges requires a combination of automation, expert
review, and ongoing refinement of evaluation processes.

Ethical Considerations in Code LLM Evaluation

Evaluating large language models trained on code must include ethical
considerations to ensure responsible use and fair outcomes. The deployment of
code-generating AI introduces risks related to intellectual property,
privacy, and bias. Ethical evaluation frameworks help mitigate these risks
and promote transparency.

Intellectual Property and Licensing

Models trained on open-source code must respect software licenses and avoid
generating plagiarized or proprietary code. Evaluators should implement
checks for license compliance and originality in outputs.

Bias and Fairness

Bias in training data can lead to models that replicate or amplify harmful
coding practices or exclude certain development communities. Regular audits
and diverse datasets help address fairness and inclusivity.

Security and Privacy

Generated code should be scrutinized for vulnerabilities, malicious
functions, or privacy risks. Automated security scans and manual reviews are
essential components of ethical evaluation.

Future Directions in Evaluating Code Language
Models

The field of evaluating large language models trained on code is evolving

rapidly. Future directions include the development of more sophisticated
benchmarks, automated evaluation tools, and collaborative ecosystems that
bring together AI researchers, software engineers, and ethicists.

Emerging trends involve integrating static analysis, dynamic testing, and
continuous feedback loops to improve evaluation accuracy. Advances in
explainable AI may also enhance transparency, helping users understand why
models produce specific code outputs. As LLMs become more powerful and widely
adopted, ongoing innovation in evaluation frameworks will be key to ensuring
safe, reliable, and high-quality code generation.

Q: What are the main metrics used to evaluate large
language models trained on code?
A: The main metrics include exact match accuracy, pass@k, functional
correctness, syntax validity, semantic similarity, and code quality. These
metrics help measure both correctness and practical usability.

Q: Why is benchmarking important in evaluating code-
focused language models?
A: Benchmarking provides objective comparisons using standardized datasets
and tasks. It helps determine model strengths, weaknesses, and progress
against industry standards.

Q: What challenges are unique to evaluating code
generation models?
A: Unique challenges include handling multiple correct solutions, detecting
security vulnerabilities, generalizing across languages, mitigating bias in
training data, and scaling comprehensive testing.

Q: How does real-world testing differ from benchmark
evaluation for code LLMs?
A: Real-world testing involves deploying models in practical scenarios, such
as IDEs and CI pipelines, and collecting user feedback. This reveals issues
and strengths that may not appear in controlled benchmark tests.

Q: What ethical considerations should be included
when evaluating LLMs trained on code?
A: Ethical considerations include respecting intellectual property and
software licenses, addressing bias and fairness, and ensuring generated code

is secure and privacy-compliant.

Q: How do evaluators handle multiple valid solutions
in code generation tasks?
A: Evaluators use functional correctness tests and semantic similarity
measures to account for diverse but correct implementations, rather than
relying solely on exact matches.

Q: What role does user feedback play in evaluating
code language models?
A: User feedback provides qualitative insights into usability, integration
challenges, and code quality, complementing quantitative performance metrics.

Q: Are there automated tools for evaluating code
generated by LLMs?
A: Yes, automated tools such as static analyzers, unit test frameworks, and
security scanners are commonly used to assess code correctness, quality, and
safety.

Q: What future trends are emerging in the evaluation
of code LLMs?
A: Future trends include advanced benchmarks, automated and dynamic
evaluation systems, explainable AI techniques, and collaborative frameworks
for continuous improvement.

Q: Why is cross-language evaluation important for
code LLMs?
A: Cross-language evaluation ensures that models generalize well across
different programming languages, supporting broader applicability and
reliability in diverse development environments.

Evaluating Large Language Models Trained On Code

Find other PDF articles:
https://fc1.getfilecloud.com/t5-w-m-e-12/files?dataid=TeP28-6709&title=two-step-equations-maze-w
orksheet-answer-key.pdf

https://fc1.getfilecloud.com/t5-goramblers-04/Book?docid=HUq54-8592&title=evaluating-large-language-models-trained-on-code.pdf
https://fc1.getfilecloud.com/t5-w-m-e-12/files?dataid=TeP28-6709&title=two-step-equations-maze-worksheet-answer-key.pdf
https://fc1.getfilecloud.com/t5-w-m-e-12/files?dataid=TeP28-6709&title=two-step-equations-maze-worksheet-answer-key.pdf

Evaluating Large Language Models Trained on Code: A
Comprehensive Guide

The world of software development is rapidly changing, with Large Language Models (LLMs) trained
on vast datasets of code emerging as powerful tools. But how do we effectively evaluate these
models, ensuring they meet the stringent requirements of reliable code generation and
comprehension? This comprehensive guide dives deep into the methodologies and metrics used to
assess LLMs specifically trained on code, providing you with the knowledge to critically evaluate
their capabilities and limitations. We'll explore various evaluation strategies, highlighting their
strengths and weaknesses, ultimately empowering you to make informed decisions when selecting
the right LLM for your coding needs.

H2: Understanding the Unique Challenges of
Evaluating Code-Trained LLMs

Unlike LLMs trained primarily on text, those focused on code present unique evaluation challenges.
Simply measuring fluency or coherence isn't enough. Code must be correct, efficient, and robust. An
LLM might generate syntactically correct code that fails to execute properly or produces unexpected
results. This necessitates a multi-faceted approach to evaluation, considering several crucial
aspects:

H3: Beyond Syntax: Assessing Code Functionality

Evaluating the functionality of code generated by an LLM requires rigorous testing. This goes
beyond simply checking if the code compiles. We need to ensure it produces the expected output
under various conditions, including edge cases and error handling scenarios. Automated testing
frameworks, unit tests, and integration tests are crucial tools in this process. Furthermore, manual
review by experienced programmers remains vital to identify subtle bugs or design flaws that
automated tests might miss.

H3: Measuring Code Efficiency and Readability

Efficiency is paramount in software development. An LLM might produce functional code, but if it's
inefficient, it's not a good solution. Evaluation should include measuring metrics like execution time,

memory usage, and algorithmic complexity. Readability is equally important; code should be easy for
humans to understand and maintain. Metrics such as code length, cyclomatic complexity, and
adherence to coding style guides can be employed to assess readability.

H3: Benchmarking Against Existing Models and Human
Performance

Comparing the performance of a code-trained LLM against established benchmarks and human
programmers offers valuable insights. Popular benchmarks like HumanEval and MBPP provide
standardized datasets for evaluating code generation capabilities. Comparing the LLM's
performance against the scores achieved by human programmers helps establish a baseline and
identify areas for improvement.

H2: Key Metrics for Evaluating Code-Trained LLMs

Several key metrics help quantify the performance of LLMs trained on code. These metrics often
complement each other, providing a holistic view of the model's capabilities:

H4: Accuracy:

This measures the percentage of correctly generated code snippets that produce the expected
output. Accuracy is a crucial metric but should be considered alongside other factors like efficiency
and readability.

H4: Precision and Recall:

In the context of code completion or suggestion tasks, precision refers to the proportion of correct
suggestions among all suggestions made, while recall refers to the proportion of correct suggestions
retrieved out of all the correct suggestions that exist.

H4: Execution Time and Memory Usage:

These metrics directly assess the efficiency of the generated code. Lower execution time and
memory usage indicate higher efficiency.

H4: Code Style and Readability Metrics:

These evaluate the adherence to coding style guidelines and the overall readability of the generated
code. Tools like SonarQube can provide valuable insights into code quality.

H2: The Role of Human Evaluation in Assessing Code
Quality

While automated metrics provide quantitative data, human evaluation remains essential.
Experienced programmers can assess aspects of code quality that are difficult to capture with
automated metrics, such as code design, maintainability, and overall elegance. Human evaluators
can also identify subtle bugs or unexpected behaviours that might be missed by automated testing.

H2: The Future of Evaluating Code-Trained LLMs

The field of LLM evaluation is constantly evolving. As LLMs become more sophisticated, new
evaluation techniques and metrics will be needed to capture their capabilities fully. Research is
ongoing into more robust and comprehensive evaluation strategies that consider the ethical
implications of AI-generated code. The focus is shifting towards evaluating not just the correctness
of the code but also its security, robustness, and potential biases.

Conclusion

Evaluating large language models trained on code requires a multi-pronged approach that combines
automated metrics with human expertise. By employing a range of techniques and paying attention
to various aspects like functionality, efficiency, and readability, we can gain a comprehensive
understanding of an LLM's capabilities and limitations. This allows for informed decisions regarding
their deployment in real-world software development tasks, ultimately paving the way for more
reliable and efficient software engineering practices.

FAQs

1. What are some popular open-source tools for evaluating code-trained LLMs? Several open-source
projects provide tools and datasets for evaluating LLMs. These include projects that offer automated
testing frameworks, code style checkers, and benchmark datasets. Look for repositories on
platforms like GitHub focusing on LLM evaluation.

2. How can I incorporate LLM evaluation into my software development workflow? Integrate
evaluation into your CI/CD pipeline. Automate testing and code analysis, and include human review
as part of the process.

3. What are the ethical considerations in evaluating LLMs trained on code? Consider potential biases
in the training data and the generated code, as well as the potential for misuse of the technology.
Ensure fairness and transparency in the evaluation process.

4. Are there any specific datasets available for benchmarking code generation models? Yes, several
benchmark datasets, such as HumanEval and MBPP (Massive Bench Press Programming), provide
standardized datasets for evaluating code generation capabilities.

5. How can I improve the performance of a code-trained LLM if its evaluation results are
unsatisfactory? Fine-tuning the model with additional high-quality code, adjusting hyperparameters,
and incorporating feedback from human evaluators are crucial strategies to improve its
performance.

Evaluating Large Language Models Trained on Code: A
Comprehensive Guide

The explosion of Large Language Models (LLMs) has revolutionized numerous fields, and their
application to code is particularly exciting. But how do we effectively evaluate these powerful tools?
Simply stating that an LLM "works" is insufficient. This comprehensive guide delves into the
intricacies of assessing LLMs trained on code, exploring various metrics, methodologies, and the
challenges involved. We'll equip you with the knowledge to critically analyze and understand the
capabilities—and limitations—of these groundbreaking models.

Understanding the Nuances of Code-Trained LLMs

Before diving into evaluation, let's clarify what we're dealing with. LLMs trained on code aren't just
regurgitating snippets; they learn complex programming concepts, syntax, and even algorithmic
patterns. They can generate code, translate between programming languages, debug existing code,
and even answer questions about code functionality. However, the quality and reliability of these
capabilities vary significantly across different models. This necessitates rigorous evaluation.

Key Metrics for Evaluating Code-Generating LLMs

Evaluating LLMs trained on code requires a multifaceted approach, going beyond simple accuracy.
We need to consider several crucial metrics:

1. Accuracy:

This is the foundational metric – does the generated code correctly solve the given problem?
However, "correctness" can be nuanced. A perfectly functional solution might still be inefficient or
poorly written. Therefore, accuracy must be considered within the broader context of other metrics.

2. Correctness and Completeness:

This metric takes the nuance mentioned above into consideration. Does the code not only work
correctly, but is it also fully functional and complete? Does it handle all edge cases as intended?

3. Efficiency:

Efficient code minimizes resource consumption (time and memory). An accurate solution that's
incredibly inefficient is less valuable than a slightly less accurate but significantly more efficient one.
This often involves analyzing time complexity and space complexity.

4. Readability and Maintainability:

Human developers will interact with the generated code. Therefore, readability and maintainability
are crucial. Well-structured, commented, and easily understandable code is far more valuable than a
complex, obfuscated solution, even if both achieve the same result.

5. Style and Consistency:

Adherence to coding style guidelines and consistent formatting improves code maintainability and
collaboration. Evaluation should assess the model's ability to generate code that conforms to
specified style standards.

Methodologies for Evaluation

Several approaches are used to evaluate code-generating LLMs:

1. Human Evaluation: Expert programmers assess the generated code for accuracy,
efficiency, readability, and adherence to best practices. This approach is subjective but crucial for
capturing nuances that automated metrics might miss.

2. Automated Metrics: Tools and techniques automatically measure aspects like code
correctness (through unit testing), complexity (using cyclomatic complexity), and adherence to style
guidelines (using linters).

3. Benchmark Datasets: Standardized datasets containing coding tasks and solutions provide
a consistent basis for comparison across different LLMs. These benchmarks help quantify
performance and facilitate objective comparisons. Examples include HumanEval and MBPP.

4. A/B Testing: Comparing the performance of different LLMs or versions of the same LLM on
the same tasks allows for direct performance comparisons.

Challenges in Evaluating Code-Generating LLMs

Evaluating these LLMs presents several challenges:

Subjectivity: Assessing readability and maintainability often involves subjective judgments.
Ambiguity: Natural language prompts can be ambiguous, leading to different interpretations and
thus different code outputs.
Scalability: Evaluating LLMs comprehensively often requires substantial computational resources
and human expertise.
Bias and Fairness: LLMs can inherit biases present in their training data, leading to unfair or
discriminatory outcomes. Evaluation needs to address this.

Conclusion

Evaluating Large Language Models trained on code is a complex but crucial undertaking. By
combining multiple metrics, methodologies, and addressing the inherent challenges, we can gain a
much more comprehensive understanding of these models' capabilities and limitations. This allows
for responsible development, deployment, and ultimately, maximizing their benefits while mitigating
potential risks. Continuous research and development in evaluation techniques are essential for the
continued advancement of this rapidly evolving field.

FAQs

1. What are some popular benchmark datasets for evaluating code-generating LLMs? Popular
datasets include HumanEval, MBPP, and CodeXGLUE. These offer a variety of programming
languages and coding tasks.

2. How can I measure the efficiency of code generated by an LLM? You can use automated metrics
such as cyclomatic complexity to assess code complexity, and then perform runtime analysis to
observe the execution time and memory usage. Profiling tools can be invaluable in this process.

3. What role does human evaluation play in assessing code quality? Human evaluation is crucial for

assessing subjective aspects like readability, maintainability, and overall code style, which
automated metrics struggle to capture fully.

4. What are the ethical considerations in evaluating code-generating LLMs? Ethical considerations
include ensuring fairness, mitigating bias, and addressing potential security vulnerabilities in
generated code. Robust testing and careful evaluation are crucial to mitigate these risks.

5. How can I contribute to the development of better evaluation methods for code-generating LLMs?
You can contribute by participating in research projects, developing new evaluation metrics,
creating and sharing benchmark datasets, and actively participating in the open-source community
dedicated to LLM evaluation.

  evaluating large language models trained on code: Hands-On Large Language Models Jay
Alammar, Maarten Grootendorst, 2024-09-11 AI has acquired startling new language capabilities in
just the past few years. Driven by the rapid advances in deep learning, language AI systems are able
to write and understand text better than ever before. This trend enables the rise of new features,
products, and entire industries. With this book, Python developers will learn the practical tools and
concepts they need to use these capabilities today. You'll learn how to use the power of pre-trained
large language models for use cases like copywriting and summarization; create semantic search
systems that go beyond keyword matching; build systems that classify and cluster text to enable
scalable understanding of large amounts of text documents; and use existing libraries and
pre-trained models for text classification, search, and clusterings. This book also shows you how to:
Build advanced LLM pipelines to cluster text documents and explore the topics they belong to Build
semantic search engines that go beyond keyword search with methods like dense retrieval and
rerankers Learn various use cases where these models can provide value Understand the
architecture of underlying Transformer models like BERT and GPT Get a deeper understanding of
how LLMs are trained Understanding how different methods of fine-tuning optimize LLMs for
specific applications (generative model fine-tuning, contrastive fine-tuning, in-context learning, etc.)
  evaluating large language models trained on code: Network Simulation and Evaluation
Zhaoquan Gu,
  evaluating large language models trained on code: ECAI 2023 K. Gal, A. Nowé, G.J. Nalepa,
2023-10-18 Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the
planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of
ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th
Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October
2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier
venue for presenting AI research in Europe, and this annual conference has become the place for
researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI,
and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received
1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting
in an acceptance rate of 23%. The 390 papers included here, cover topics including machine
learning, natural language processing, multi agent systems, and vision and knowledge
representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after
a rigorous review process. Those 10 papers cover topics ranging from fostering better working
environments, behavior modeling and citizen science to large language models and neuro-symbolic
applications, and are also included here. Presenting a comprehensive overview of current research
and developments in AI, the book will be of interest to all those working in the field.
  evaluating large language models trained on code: Computational Science – ICCS 2023 Jiří
Mikyška, Clélia de Mulatier, Maciej Paszynski, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, Peter
M.A. Sloot, 2023-06-30 The five-volume set LNCS 14073-14077 constitutes the proceedings of the

23rd International Conference on Computational Science, ICCS 2023, held in Prague, Czech
Republic, during July 3-5, 2023. The total of 188 full papers and 94 short papers presented in this
book set were carefully reviewed and selected from 530 submissions. 54 full and 37 short papers
were accepted to the main track; 134 full and 57 short papers were accepted to the
workshops/thematic tracks. The theme for 2023, Computation at the Cutting Edge of Science,
highlights the role of Computational Science in assisting multidisciplinary research. This conference
was a unique event focusing on recent developments in scalable scientific algorithms, advanced
software tools; computational grids; advanced numerical methods; and novel application areas.
These innovative novel models, algorithms, and tools drive new science through efficient application
in physical systems, computational and systems biology, environmental systems, finance, and others.
  evaluating large language models trained on code: Large Language Models Uday
Kamath, Kevin Keenan, Garrett Somers, Sarah Sorenson, 2024 Large Language Models (LLMs) have
emerged as a cornerstone technology, transforming how we interact with information and redefining
the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand,
generate, and interact with human language in an intuitive and insightful manner, leading to
transformative applications across domains like content creation, chatbots, search engines, and
research tools. While fascinating, the complex workings of LLMs -- their intricate architecture,
underlying algorithms, and ethical considerations -- require thorough exploration, creating a need
for a comprehensive book on this subject. This book provides an authoritative exploration of the
design, training, evolution, and application of LLMs. It begins with an overview of pre-trained
language models and Transformer architectures, laying the groundwork for understanding
prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating
reinforcement learning for value alignment, and the convergence of LLMs with computer vision,
robotics, and speech processing. The book strongly emphasizes practical applications, detailing
real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and
code generation. These examples are carefully chosen to illustrate the diverse and impactful ways
LLMs are being applied in various industries and scenarios. Readers will gain insights into
operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing
challenges like bias and ethical implications. The book also introduces the cutting-edge realm of
multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials
for applying LLMs to natural language tasks, this thorough guide equips readers with both
theoretical knowledge and practical skills for leveraging the full potential of large language models.
This comprehensive resource is appropriate for a wide audience: students, researchers and
academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and
intricacies of LLMs.
  evaluating large language models trained on code: Proceedings of International
Conference on Recent Innovations in Computing Zoltán Illés,
  evaluating large language models trained on code: Large Language Models in
Cybersecurity Andrei Kucharavy, 2024 This open access book provides cybersecurity practitioners
with the knowledge needed to understand the risks of the increased availability of powerful large
language models (LLMs) and how they can be mitigated. It attempts to outrun the malicious
attackers by anticipating what they could do. It also alerts LLM developers to understand their
work's risks for cybersecurity and provides them with tools to mitigate those risks. The book starts
in Part I with a general introduction to LLMs and their main application areas. Part II collects a
description of the most salient threats LLMs represent in cybersecurity, be they as tools for
cybercriminals or as novel attack surfaces if integrated into existing software. Part III focuses on
attempting to forecast the exposure and the development of technologies and science underpinning
LLMs, as well as macro levers available to regulators to further cybersecurity in the age of LLMs.
Eventually, in Part IV, mitigation techniques that should allowsafe and secure development and
deployment of LLMs are presented. The book concludes with two final chapters in Part V, one
speculating what a secure design and integration of LLMs from first principles would look like and

the other presenting a summary of the duality of LLMs in cyber-security. This book represents the
second in a series published by the Technology Monitoring (TM) team of the Cyber-Defence Campus.
The first book entitled Trends in Data Protection and Encryption Technologies appeared in 2023.
This book series provides technology and trend anticipation for government, industry, and academic
decision-makers as well as technical experts.
  evaluating large language models trained on code: Building AI Intensive Python
Applications Rachelle Palmer, Ben Perlmutter, Ashwin Gangadhar, Nicholas Larew, Sigfrido
Narváez, Thomas Rueckstiess, Henry Weller, Richmond Alake, Shubham Ranjan, 2024-09-06 Master
retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering
real-world use cases and best practices to create powerful AI apps Key Features Get to grips with
the fundamentals of LLMs, vector databases, and Python frameworks Implement effective
retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance
and accuracy with model compression and deployment optimization Purchase of the print or Kindle
book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book
serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of
the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how
these technologies work together to create intelligent applications. The chapters will help you
discover best practices for data preparation, model selection, and fine-tuning, and teach you
advanced techniques such as retrieval-augmented generation (RAG) to overcome common
challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector
databases, implement effective vector search strategies, refine models for accuracy, and optimize
performance to achieve impactful results. You’ll also identify and address AI failures to ensure your
applications deliver reliable and valuable results. By evaluating and improving the output of LLMs,
you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be
well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn
Understand the architecture and components of the generative AI stack Explore the role of vector
databases in enhancing AI applications Master Python frameworks for AI development Implement
Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common
failures and challenges in AI development Who this book is for This book is for software engineers
and developers looking to build intelligent applications using generative AI. While the book is
suitable for beginners, a basic understanding of Python programming is required to make the most
of it.
  evaluating large language models trained on code: AI Verification Guy Avni,
  evaluating large language models trained on code: Natural Language Processing with
Transformers, Revised Edition Lewis Tunstall, Leandro von Werra, Thomas Wolf, 2022-05-26 Since
their introduction in 2017, transformers have quickly become the dominant architecture for
achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data
scientist or coder, this practical book -now revised in full color- shows you how to train and scale
these large models using Hugging Face Transformers, a Python-based deep learning library.
Transformers have been used to write realistic news stories, improve Google Search queries, and
even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra,
and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to
teach you how transformers work and how to integrate them in your applications. You'll quickly
learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for
core NLP tasks, such as text classification, named entity recognition, and question answering Learn
how transformers can be used for cross-lingual transfer learning Apply transformers in real-world
scenarios where labeled data is scarce Make transformer models efficient for deployment using
techniques such as distillation, pruning, and quantization Train transformers from scratch and learn
how to scale to multiple GPUs and distributed environments
  evaluating large language models trained on code: Generative AI with LangChain Ben
Auffarth, 2023-12-22 2024 Edition – Get to grips with the LangChain framework to develop

production-ready applications, including agents and personal assistants. The 2024 edition features
updated code examples and an improved GitHub repository. Purchase of the print or Kindle book
includes a free PDF eBook. Key Features Learn how to leverage LangChain to work around LLMs’
inherent weaknesses Delve into LLMs with LangChain and explore their fundamentals, ethical
dimensions, and application challenges Get better at using ChatGPT and GPT models, from
heuristics and training to scalable deployment, empowering you to transform ideas into reality Book
DescriptionChatGPT and the GPT models by OpenAI have brought about a revolution not only in how
we write and research but also in how we can process information. This book discusses the
functioning, capabilities, and limitations of LLMs underlying chat systems, including ChatGPT and
Gemini. It demonstrates, in a series of practical examples, how to use the LangChain framework to
build production-ready and responsive LLM applications for tasks ranging from customer support to
software development assistance and data analysis – illustrating the expansive utility of LLMs in
real-world applications. Unlock the full potential of LLMs within your projects as you navigate
through guidance on fine-tuning, prompt engineering, and best practices for deployment and
monitoring in production environments. Whether you're building creative writing tools, developing
sophisticated chatbots, or crafting cutting-edge software development aids, this book will be your
roadmap to mastering the transformative power of generative AI with confidence and
creativity.What you will learn Create LLM apps with LangChain, like question-answering systems
and chatbots Understand transformer models and attention mechanisms Automate data analysis and
visualization using pandas and Python Grasp prompt engineering to improve performance Fine-tune
LLMs and get to know the tools to unleash their power Deploy LLMs as a service with LangChain
and apply evaluation strategies Privately interact with documents using open-source LLMs to
prevent data leaks Who this book is for The book is for developers, researchers, and anyone
interested in learning more about LangChain. Whether you are a beginner or an experienced
developer, this book will serve as a valuable resource if you want to get the most out of LLMs using
LangChain. Basic knowledge of Python is a prerequisite, while prior exposure to machine learning
will help you follow along more easily.
  evaluating large language models trained on code: Educational Research and
Innovation Is Education Losing the Race with Technology? AI's Progress in Maths and
Reading OECD, 2023-03-28 Advances in artificial intelligence (AI) are ushering in a large and rapid
technological transformation. Understanding how AI capabilities relate to human skills and how they
develop over time is crucial for understanding this process.
  evaluating large language models trained on code: The Era of Global Risk SJ Beard,
Martin Rees, Catherine Richards, Clarissa Rios Rojas, 2023-08-23 This innovative and
comprehensive collection of essays explores the biggest threats facing humanity in the 21st century;
threats that cannot be contained or controlled and that have the potential to bring about human
extinction and civilization collapse. Bringing together experts from many disciplines, it provides an
accessible survey of what we know about these threats, how we can understand them better, and
most importantly what can be done to manage them effectively. These essays pair insights from
decades of research and activism around global risk with the latest academic findings from the
emerging field of Existential Risk Studies. Voicing the work of world leading experts and tackling a
variety of vital issues, they weigh up the demands of natural systems with political pressures and
technological advances to build an empowering vision of how we can safeguard humanity’s
long-term future. The book covers both a comprehensive survey of how to study and manage global
risks with in-depth discussion of core risk drivers: including environmental breakdown, novel
technologies, global scale natural disasters, and nuclear threats. The Era of Global Risk offers a
thorough analysis of the most serious dangers to humanity. Inspiring, accessible, and essential
reading for both students of global risk and those committed to its mitigation, this book poses one
critical question: how can we make sense of this era of global risk and move beyond it to an era of
global safety?
  evaluating large language models trained on code: Accelerated Materials Discovery Phil De

Luna, 2022-02-21 Typical timelines to go from discovery to impact in the advanced materials sector
are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate
the discovery and development of new materials dramatically. This book is a primer for any
materials scientist looking to future-proof their careers and get ahead of the disruption that artificial
intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how
we can use these disruptive technologies to augment and supercharge our abilities to discover new
materials that will solve world’s biggest challenges. Written by world leading experts on accelerated
materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota
Research Institute, Citrine Informatics) and national labs (National Research Council of Canada,
Lawrence Berkeley National Labs).
  evaluating large language models trained on code: Artificial Neural Networks and
Machine Learning – ICANN 2024 Michael Wand,
  evaluating large language models trained on code: Transformers for Natural Language
Processing and Computer Vision Denis Rothman, 2024-02-29 The definitive guide to LLMs, from
architectures, pretraining, and fine-tuning to Retrieval Augmented Generation (RAG), multimodal
Generative AI, risks, and implementations with ChatGPT Plus with GPT-4, Hugging Face, and Vertex
AI Key Features Compare and contrast 20+ models (including GPT-4, BERT, and Llama 2) and
multiple platforms and libraries to find the right solution for your project Apply RAG with LLMs
using customized texts and embeddings Mitigate LLM risks, such as hallucinations, using
moderation models and knowledge bases Purchase of the print or Kindle book includes a free eBook
in PDF format Book DescriptionTransformers for Natural Language Processing and Computer
Vision, Third Edition, explores Large Language Model (LLM) architectures, applications, and various
platforms (Hugging Face, OpenAI, and Google Vertex AI) used for Natural Language Processing
(NLP) and Computer Vision (CV). The book guides you through different transformer architectures
to the latest Foundation Models and Generative AI. You’ll pretrain and fine-tune LLMs and work
through different use cases, from summarization to implementing question-answering systems with
embedding-based search techniques. You will also learn the risks of LLMs, from hallucinations and
memorization to privacy, and how to mitigate such risks using moderation models with rule and
knowledge bases. You’ll implement Retrieval Augmented Generation (RAG) with LLMs to improve
the accuracy of your models and gain greater control over LLM outputs. Dive into generative vision
transformers and multimodal model architectures and build applications, such as image and
video-to-text classifiers. Go further by combining different models and platforms and learning about
AI agent replication. This book provides you with an understanding of transformer architectures,
pretraining, fine-tuning, LLM use cases, and best practices.What you will learn Breakdown and
understand the architectures of the Original Transformer, BERT, GPT models, T5, PaLM, ViT, CLIP,
and DALL-E Fine-tune BERT, GPT, and PaLM 2 models Learn about different tokenizers and the best
practices for preprocessing language data Pretrain a RoBERTa model from scratch Implement
retrieval augmented generation and rules bases to mitigate hallucinations Visualize transformer
model activity for deeper insights using BertViz, LIME, and SHAP Go in-depth into vision
transformers with CLIP, DALL-E 2, DALL-E 3, and GPT-4V Who this book is for This book is ideal for
NLP and CV engineers, software developers, data scientists, machine learning engineers, and
technical leaders looking to advance their LLMs and generative AI skills or explore the latest trends
in the field. Knowledge of Python and machine learning concepts is required to fully understand the
use cases and code examples. However, with examples using LLM user interfaces, prompt
engineering, and no-code model building, this book is great for anyone curious about the AI
revolution.
  evaluating large language models trained on code: Advances in Neural Computation,
Machine Learning, and Cognitive Research VIII Boris Kryzhanovsky,
  evaluating large language models trained on code: Neural Information Processing Biao
Luo, Long Cheng, Zheng-Guang Wu, Hongyi Li, Chaojie Li, 2023-11-13 The six-volume set LNCS
14447 until 14452 constitutes the refereed proceedings of the 30th International Conference on

Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023. The 652
papers presented in the proceedings set were carefully reviewed and selected from 1274
submissions. They focus on theory and algorithms, cognitive neurosciences; human centred
computing; applications in neuroscience, neural networks, deep learning, and related fields.
  evaluating large language models trained on code: Fundamental Approaches to Software
Engineering Dirk Beyer,
  evaluating large language models trained on code: Breaking Barriers with Generative
Intelligence. Using GI to Improve Human Education and Well-Being Azza Basiouni,
  evaluating large language models trained on code: Handbook of Evolutionary Machine
Learning Wolfgang Banzhaf, Penousal Machado, Mengjie Zhang, 2023-11-01 This book, written by
leading international researchers of evolutionary approaches to machine learning, explores various
ways evolution can address machine learning problems and improve current methods of machine
learning. Topics in this book are organized into five parts. The first part introduces some
fundamental concepts and overviews of evolutionary approaches to the three different classes of
learning employed in machine learning. The second addresses the use of evolutionary computation
as a machine learning technique describing methodologic improvements for evolutionary clustering,
classification, regression, and ensemble learning. The third part explores the connection between
evolution and neural networks, in particular the connection to deep learning, generative and
adversarial models as well as the exciting potential of evolution with large language models. The
fourth part focuses on the use of evolutionary computation for supporting machine learning
methods. This includes methodological developments for evolutionary data preparation, model
parametrization, design, and validation. The final part covers several chapters on applications in
medicine, robotics, science, finance, and other disciplines. Readers find reviews of application areas
and can discover large-scale, real-world applications of evolutionary machine learning to a variety of
problem domains. This book will serve as an essential reference for researchers, postgraduate
students, practitioners in industry and all those interested in evolutionary approaches to machine
learning.
  evaluating large language models trained on code: Technologies and Applications of
Artificial Intelligence Chao-Yang Lee,
  evaluating large language models trained on code: AI for Health Equity and Fairness
Arash Shaban-Nejad,
  evaluating large language models trained on code: Transformers for Natural Language
Processing Denis Rothman, 2022-03-25 OpenAI's GPT-3, ChatGPT, GPT-4 and Hugging Face
transformers for language tasks in one book. Get a taste of the future of transformers, including
computer vision tasks and code writing and assistance. Purchase of the print or Kindle book includes
a free eBook in PDF format Key Features Improve your productivity with OpenAI’s ChatGPT and
GPT-4 from prompt engineering to creating and analyzing machine learning models Pretrain a
BERT-based model from scratch using Hugging Face Fine-tune powerful transformer models,
including OpenAI's GPT-3, to learn the logic of your data Book DescriptionTransformers
are...well...transforming the world of AI. There are many platforms and models out there, but which
ones best suit your needs? Transformers for Natural Language Processing, 2nd Edition, guides you
through the world of transformers, highlighting the strengths of different models and platforms,
while teaching you the problem-solving skills you need to tackle model weaknesses. You'll use
Hugging Face to pretrain a RoBERTa model from scratch, from building the dataset to defining the
data collator to training the model. If you're looking to fine-tune a pretrained model, including
GPT-3, then Transformers for Natural Language Processing, 2nd Edition, shows you how with
step-by-step guides. The book investigates machine translations, speech-to-text, text-to-speech,
question-answering, and many more NLP tasks. It provides techniques to solve hard language
problems and may even help with fake news anxiety (read chapter 13 for more details). You'll see
how cutting-edge platforms, such as OpenAI, have taken transformers beyond language into
computer vision tasks and code creation using DALL-E 2, ChatGPT, and GPT-4. By the end of this

book, you'll know how transformers work and how to implement them and resolve issues like an AI
detective.What you will learn Discover new techniques to investigate complex language problems
Compare and contrast the results of GPT-3 against T5, GPT-2, and BERT-based transformers Carry
out sentiment analysis, text summarization, casual speech analysis, machine translations, and more
using TensorFlow, PyTorch, and GPT-3 Find out how ViT and CLIP label images (including blurry
ones!) and create images from a sentence using DALL-E Learn the mechanics of advanced prompt
engineering for ChatGPT and GPT-4 Who this book is for If you want to learn about and apply
transformers to your natural language (and image) data, this book is for you. You'll need a good
understanding of Python and deep learning and a basic understanding of NLP to benefit most from
this book. Many platforms covered in this book provide interactive user interfaces, which allow
readers with a general interest in NLP and AI to follow several chapters. And don't worry if you get
stuck or have questions; this book gives you direct access to our AI/ML community to help guide you
on your transformers journey!
  evaluating large language models trained on code: Artificial Intelligence David R.
Martinez, Bruke M. Kifle, 2024-06-11 The first text to take a systems engineering approach to
artificial intelligence (AI), from architecture principles to the development and deployment of AI
capabilities. Most books on artificial intelligence (AI) focus on a single functional building block,
such as machine learning or human-machine teaming. Artificial Intelligence takes a more holistic
approach, addressing AI from the view of systems engineering. The book centers on the
people-process-technology triad that is critical to successful development of AI products and
services. Development starts with an AI design, based on the AI system architecture, and culminates
with successful deployment of the AI capabilities. Directed toward AI developers and operational
users, this accessibly written volume of the MIT Lincoln Laboratory Series can also serve as a text
for undergraduate seniors and graduate-level students and as a reference book. Key features:
In-depth look at modern computing technologies Systems engineering description and means to
successfully undertake an AI product or service development through deployment Existing methods
for applying machine learning operations (MLOps) AI system architecture including a description of
each of the AI pipeline building blocks Challenges and approaches to attend to responsible AI in
practice Tools to develop a strategic roadmap and techniques to foster an innovative team
environment Multiple use cases that stem from the authors’ MIT classes, as well as from AI
practitioners, AI project managers, early-career AI team leaders, technical executives, and
entrepreneurs Exercises and Jupyter notebook examples
  evaluating large language models trained on code: Service Oriented, Holonic and
Multi-Agent Manufacturing Systems for Industry of the Future Theodor Borangiu, Damien
Trentesaux, Paulo Leitão, 2023-02-01 The scientific theme of the book is “Virtualisation – a
multifaceted key enabler of Industry 4.0 from holonic to cloud manufacturing” which is addressed in
the framework of cyber-physical system development. The book approaches cyber-physical systems
for manufacturing with emergent digital technologies: Internet of Things, digital twins (based on the
virtualization of production models embedded in the design, virtual commissioning, optimization and
resilience of processes and fault tolerance of resources), big data, cloud control and computing,
machine learning and cobots, that are applied in the book’s chapters to industry and service sectors
such as manufacturing, energy, logistics, construction and health care. The novelty of this approach
consists in interpreting and applying the characteristics of RAMI4.0—the reference architecture
model of the Industry 4.0 framework—as combinations of virtualized cyber-physical system elements
and IT components in life cycle value stream models. The general scope of the book is to foster
innovation in smart and sustainable manufacturing and logistics systems and in this context to
promote concepts, methods and solutions for the digital transformation of manufacturing through
service orientation in holonic and agent-based control with distributed intelligence. The book’s
readership is comprised by researchers and engineers working in the manufacturing value chain
area who develop and use digital control solutions in the “Industry of the Future” vision. The book
also addresses to master’s and Ph.D. students enrolled in Engineering Sciences programs.

  evaluating large language models trained on code: Generative AI for Effective Software
Development Anh Nguyen-Duc,
  evaluating large language models trained on code: Artificial Intelligence and
Visualization: Advancing Visual Knowledge Discovery Boris Kovalerchuk, Kawa Nazemi, Răzvan
Andonie, Nuno Datia, Ebad Bannissi, 2024 Zusammenfassung: This book continues a series of
Springer publications devoted to the emerging field of Integrated Artificial Intelligence and Machine
Learning with Visual Knowledge Discovery and Visual Analytics that combine advances in both
fields. Artificial Intelligence and Machine Learning face long-standing challenges of explainability
and interpretability that underpin trust. Such attributes are fundamental to both decision-making
and knowledge discovery. Models are approximations and, at best, interpretations of reality that are
transposed to algorithmic form. A visual explanation paradigm is critically important to address such
challenges, as current studies demonstrate in salience analysis in deep learning for images and
texts. Visualization means are generally effective for discovering and explaining high-dimensional
patterns in all high-dimensional data, while preserving data properties and relations in visualizations
is challenging. Recent developments, such as in General Line Coordinates, open new opportunities
to address such challenges. This book contains extended papers presented in 2021 and 2022 at the
International Conference on Information Visualization (IV) on AI and Visual Analytics, with 18
chapters from international collaborators. The book builds on the previous volume, published in
2022 in the Studies in Computational Intelligence. The current book focuses on the following
themes: knowledge discovery with lossless visualizations, AI/ML through visual knowledge discovery
with visual analytics case studies application, and visual knowledge discovery in text mining and
natural language processing. The intended audience for this collection includes but is not limited to
developers of emerging AI/machine learning and visualization applications, scientists, practitioners,
and research students. It has multiple examples of the current integration of AI/machine learning
and visualization for visual knowledge discovery, visual analytics, and text and natural language
processing. The book provides case examples for future directions in this domain. New researchers
find inspiration to join the profession of the field of AI/machine learning through a visualization lens.
  evaluating large language models trained on code: Good Practices and New Perspectives in
Information Systems and Technologies Álvaro Rocha,
  evaluating large language models trained on code: Advancement in Business Analytics
Tools for Higher Financial Performance Gharoie Ahangar, Reza, Napier, Mark, 2023-08-08 The
relentless growth of data in financial markets has boosted the demand for more advanced analytical
tools to facilitate and improve financial planning. The ability to constructively use this data is limited
for managers and investors without the proper theoretical support. Within this context, there is an
unmet demand for combining analytical finance methods with business analytics topics to inform
better investment decisions. Advancement in Business Analytics Tools for Higher Financial
Performance explores the financial applications of business analytics tools that can help financial
managers and investors to better understand financial theory and improve institutional investment
practices. This book explores the value extraction process using more accurate financial data via
business analytical tools to help investors and portfolio managers develop more modern financial
planning processes. Covering topics such as financial markets, investment analysis, and statistical
tools, this book is ideal for accountants, data analysts, researchers, students, business professionals,
academicians, and more.
  evaluating large language models trained on code: Ethics and Fairness in Medical
Imaging Esther Puyol-Antón,
  evaluating large language models trained on code: Computer Security – ESORICS 2024
Joaquin Garcia-Alfaro,
  evaluating large language models trained on code: Emerging Technologies in
Computing Mahdi H. Miraz, Garfield Southall, Maaruf Ali, Andrew Ware, 2024-01-20 This book
constitutes the refereed conference proceedings of the 6th International Conference on Emerging
Technologies in Computing, iCETiC 2023, held at Southend-on-Sea, UK, in August 2023. The 15

revised full papers were reviewed and selected from 41 submissions and are organised in topical
sections covering AI, expert systems and big data analytics; information and network security; cloud,
IoT and distributed computing.
  evaluating large language models trained on code: Knowledge Science, Engineering
and Management Cungeng Cao,
  evaluating large language models trained on code: PROCEEDINGS OF THE 24TH
CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2024 Nina
Narodytska, Philipp Rümmer, 2024-10-01 Die Proceedings zur Konferenz „Formal Methods in
Computer-Aided Design 2024“ geben aktuelle Einblicke in ein spannendes Forschungsfeld. Zum
fünften Mal erscheinen die Beiträge der Konferenzreihe „Formal Methods in Computer-Aided
Design“ (FMCAD) als Konferenzband bei TU Wien Academic Press. Der aktuelle Band der seit 2006
jährlich veranstalteten Konferenzreihe präsentiert in 35 Beiträgen neueste wissenschaftliche
Erkenntnisse aus dem Bereich des computergestützten Entwerfens. Die Beiträge behandeln formale
Aspekte des computergestützten Systemdesigns einschließlich Verifikation, Spezifikation, Synthese
und Test. Die FMCAD-Konferenz findet im Oktober 2024 in Prag, Tschechische Republik, statt. Sie
gilt als führendes Forum im Bereich des computer-aided design und bietet seit ihrer Gründung
Forschenden sowohl aus dem akademischen als auch dem industriellen Umfeld die Möglichkeit, sich
auszutauschen und zu vernetzen.
  evaluating large language models trained on code: Philosophy and Theory of Artificial
Intelligence 2021 Vincent C. Müller, 2022-11-14 This book gathers contributions from the fourth
edition of the Conference on Philosophy and Theory of Artificial Intelligence (PT-AI), held on 27-28th
of September 2021 at Chalmers University of Technology, in Gothenburg, Sweden. It covers topics
at the interface between philosophy, cognitive science, ethics and computing. It discusses advanced
theories fostering the understanding of human cognition, human autonomy, dignity and morality,
and the development of corresponding artificial cognitive structures, analyzing important aspects of
the relationship between humans and AI systems, including the ethics of AI. This book offers a
thought-provoking snapshot of what is currently going on, and what are the main challenges, in the
multidisciplinary field of the philosophy of artificial intelligence.
  evaluating large language models trained on code: Leveraging Applications of Formal
Methods, Verification and Validation. Verification Principles Tiziana Margaria, Bernhard
Steffen, 2022-10-19 This four-volume set LNCS 13701-13704 constitutes contributions of the
associated events held at the 11th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2022, which took place in Rhodes, Greece, in October/November 2022. The
contributions in the four-volume set are organized according to the following topical sections:
specify this - bridging gaps between program specification paradigms; x-by-construction meets
runtime verification; verification and validation of concurrent and distributed heterogeneous
systems; programming - what is next: the role of documentation; automated software re-engineering;
DIME day; rigorous engineering of collective adaptive systems; formal methods meet machine
learning; digital twin engineering; digital thread in smart manufacturing; formal methods for
distributed computing in future railway systems; industrial day.
  evaluating large language models trained on code: Learn AI-assisted Python Programming
Leo Porter, 2024-01-09 Writing computer programs in Python just got a lot easier! Use AI-assisted
coding tools like GitHub Copilot and ChatGPT to turn your ideas into applications faster than ever.
AI has changed the way we write computer programs. With tools like Copilot and ChatGPT, you can
describe what you want in plain English, and watch your AI assistant generate the code right before
your eyes. It’s perfect for beginners, or anyone who’s struggled with the steep learning curve of
traditional programming. In Learn AI-Assisted Python Programming: With GitHub Copilot and
ChatGPT you’ll learn how to: Write fun and useful Python applications—no programming experience
required! Use the Copilot AI coding assistant to create Python programs Write prompts that tell
Copilot exactly what to do Read Python code and understand what it does Test your programs to
make sure they work the way you want them to Fix code with prompt engineering or human tweaks

Apply Python creatively to help out on the job Learn AI-Assisted Python Programming: With GitHub
Copilot and ChatGPT is a hands-on beginner’s guide that is written by two esteemed computer
science university professors. It teaches you everything you need to start programming Python in an
AI-first world. You’ll hit the ground running, writing prompts that tell your AI-assistant exactly what
you want your programs to do. Along the way, you’ll pick up the essentials of Python programming
and practice the higher-level thinking you’ll need to create working apps for data analysis,
automating tedious tasks, and even video games. Foreword by Beth Simon, Ph.D. About the
technology The way people write computer programs has changed forever. Using GitHub Copilot,
you describe in plain English what you want your program to do, and the AI generates it instantly.
About the book This book shows you how to create and improve Python programs using AI—even if
you’ve never written a line of computer code before. Spend less time on the slow, low-level
programming details and instead learn how an AI assistant can bring your ideas to life immediately.
As you go, you’ll even learn enough of the Python language to understand and improve what your AI
assistant creates. What's inside Prompts for working code Tweak code manually and with AI help
AI-test your programs Let AI handle tedious details About the reader If you can move files around on
your computer and install new programs, you can learn to write useful software! About the author
Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching
Professor at the University of Toronto. The technical editor on this book was Peter Morgan. Table of
Contents 1 Introducing AI-assisted programming with Copilot 2 Getting started with Copilot 3
Designing functions 4 Reading Python code – Part 1 5 Reading Python Code – Part 2 6 Testing and
prompt engineering 7 Problem decomposition 8 Debugging and better understanding your code 9
Automating tedious tasks 10 Making some games 11 Future directions
  evaluating large language models trained on code: HHAI 2023: Augmenting Human
Intellect P. Lukowicz, S. Mayer, J. Koch, 2023-07-07 Artificial intelligence (AI) has been much in the
news recently, with some commentators expressing concern that AI might eventually replace
humans. But many developments in AI are designed to enhance and supplement the performance of
humans rather than replace them, and a novel field of study, with new approaches and solutions to
the development of AI, has arisen to focus on this aspect of the technology. This book presents the
proceedings of HHAI2023, the 2nd International Conference on Hybrid Human-Artificial
Intelligence, held from 26-30 June 2023, in Munich, Germany. The HHAI international conference
series is focused on the study of artificially intelligent systems that cooperate synergistically,
proactively, responsibly and purposefully with humans, amplifying rather than replacing human
intelligence, and invites contributions from various fields, including AI, human-computer interaction,
the cognitive and social sciences, computer science, philosophy, among others. A total of 78
submissions were received for the main conference track, and most papers were reviewed by at least
three reviewers. The overall final acceptance rate was 43%, with 14 contributions accepted as full
papers, 14 as working papers, and 6 as extended abstracts. The papers presented here cover topics
including interactive hybrid agents; hybrid intelligence for decision support; hybrid intelligence for
health; and values such as fairness and trust in hybrid intelligence. We further accepted 17 posters
and 4 demos as well as 8 students to the first HHAI doctoral consortium this year. The authors of 4
working papers and 2 doctoral consortium submissions opted for not publishing their submissions to
allow a later full submission, resulting in a total of 57 papers included in this proceedings
Addressing all aspects of AI systems that assist humans and emphasizing the need for adaptive,
collaborative, responsible, interactive, and human-centered artificial intelligence systems which can
leverage human strengths and compensate for human weaknesses while considering social, ethical,
and legal considerations, the book will be of interest to all those working in the field.
  evaluating large language models trained on code: Software Languages Talon Zinc,
2024-10-01 Code Titans: The Global Dominance of Programming Languages explores the fascinating
world of programming languages that shape our digital landscape. This comprehensive guide delves
into the evolution, market dominance, and real-world applications of influential languages like
Python, JavaScript, and Java. The book argues that the choice of programming language significantly

impacts software development efficiency and problem-solving capabilities across industries.
Structured in three parts, Code Titans begins with fundamental concepts, then profiles widely-used
languages, and concludes by examining future trends in programming. What sets this book apart is
its holistic approach, viewing languages as living ecosystems influenced by community dynamics and
global technological trends. It balances technical depth with clear explanations, making it accessible
to both experienced programmers and curious non-technical readers. The book offers unique
insights from interviews with language creators and industry leaders, while also exploring
interdisciplinary connections between programming languages and fields like cognitive science.
Readers will gain practical advice on choosing the right language for specific projects and strategies
for managing multi-language software ecosystems. By understanding the strengths and limitations of
today's dominant programming languages, readers will be better equipped to navigate the complex
world of technology.

Back to Home: https://fc1.getfilecloud.com

https://fc1.getfilecloud.com

